Spelling suggestions: "subject:"alectric field."" "subject:"delectric field.""
51 |
Numerical Study of Electric Field Enhanced CombustionHan, Jie 26 December 2016 (has links)
Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations.
In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation.
Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions, together with the discovery of the plasma sheath and dead zone in flames, are the novel contributions of this work.
|
52 |
Effects of AC Electric Field on Small Laminar Nonpremixed FlamesXiong, Yuan 04 1900 (has links)
Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques.
Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and
temperature fields with those from experiment.
With sub-critical AC applied to the baseline flames, particle image velocimetry
(PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the baseline case, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex.
By varying applied AC in a wide range of frequency and voltage, several insta- bility modes were observed, including flicking flames, partial pinch-off of flames, and spinning flames. High speed imaging together with Mie scattering techniques were combined to reveal the flame dynamics as well as the flow structure inside the flames. Original steady toroidal vortices triggered by AC were noted to exhibit axisymmetric axial instability in the flicking and partial pinch-off modes and non-axisymmetric azimuthal instability in the spinning mode. Electrical measurements were also conducted simultaneously to identify the voltage, current, and electrical power responses. Integrated power was noted to be sensitive to indicate subtle variation of flames properties and to the occurrence of axial instability.
Under low frequency AC forcing with electrical conditions not generating toroidal vortices, responses of flames were further investigated. Several nonlinear flame responses, including frequency doubling and tripling phenomena, were identified. Spectral analysis revealed that such nonlinear responses were attributed to the combined
effects of triggering buoyancy-induced oscillation of the flame as well as the Lorenz force generated by applying AC. Phase delay behaviors between the applied voltage and the heat release rate (or flame size) were also studied to explore the potential of applying AC in controlling flame instability. It was found that the phase delay had large variations for AC frequency smaller than 80 Hz and became saturated at over 80 Hz, which has been explained based on the interaction between the buoyancy and ionic wind. Electrical measurement showed the power consumed by the AC was smaller than 0.01% of the heat release rate from the flame.
To improve the understanding on the electric current resulting from applying electric field on flames, a simplified one-dimensional model was developed in that the reaction zone was modeled as a thin ionized layer. Model governing equations were derived from species equations by implementing mobility differences depending on the type of charged particles, especially between ions and electrons. The result showed that the sub-saturated current along with field intensity was significantly influenced by the polarity of DC due to the combined effect of non-equal mobility of charged particles as well as the position of the ionized layer in a gap relative to two electrodes. Experiments with quasi-one-dimensional flames under DC were conducted to substantiate the model and measured currents agreed qualitatively well with the model predictions.
|
53 |
Effect of Electric Field on Outwardly Propagating Spherical FlameMannaa, Ossama 06 1900 (has links)
The thesis comprises effects of electric fields on a fundamental study of spherical premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing.
Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly propagating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been investigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect.
The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The combustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.
|
54 |
Design of Capacitive Wireless Power Transfer Systems with Enhanced Power Density and Stray Field ShieldingPratik, Ujjwal 01 August 2019 (has links)
Wireless power transfer is becoming relevant today because of its effectiveness and convenience. It has been employed into consumer electronics such as cellular charging and electric vehicle charging. In general, inductive wireless power transfer (IPT) is mostly used for WPT. IPT requires coils and power transfer enhancing material such as ferrite to transfer power. However, Capacitive wireless Power Transfer (CPT) appears as an alternative because it requires cost effective and light metal plate couplers. Among CPT couplers, Vertical (stacked) Four-Plate Coupler (V4PC) structure offers the advantage of higher input and output self-capacitances, rotational misalignment.
Safety is one of the most important aspect of wireless power transfer. This thesis proposes a solution to minimize the leakage electric field of Vertical 4-Plate Couplers (V4PCs). It does so by finding the optimum value of circuit parameters. The effectiveness of the proposed solution is shown by experimental results.
|
55 |
Advanced Electrostatic Engineering for III-Nitride Power DevicesRahman, Mohammad Wahidur 24 October 2022 (has links)
No description available.
|
56 |
Polymer Microfluidic Devices for BioanalysisSun, Xuefei 21 February 2009 (has links) (PDF)
Polymeric microchips have received increasing attention in chemical analysis because polymers have attractive properties, such as low cost, ease of fabrication, biocompatibility and high flexibility. However, commercial polymers usually exhibit analyte adsorption on their surfaces, which can interfere with microfluidic transport in, for example, chemical separations such as chromatography or electrophoresis. Usually, surface modification is required to eliminate this problem. To perform stable and durable surface modification, a new polymer, poly(methyl methacrylate-co-glycidyl methacrylate) (PGMAMMA) was prepared for microchip fabrication, which provides epoxy groups on the surface. Whole surface atom transfer radical polymerization (ATRP) and in-channel ATRP approaches were employed to create uniform and dense poly(ethylene glycol) (PEG)-functionalized polymer brush channel surfaces for capillary electrophoresis (CE) separation of biomolecules, such as peptides and proteins. In addition, a novel microchip material was developed for bioanalysis, which does not require surface modification, made from a PEG-functionalized copolymer. The fabrication is easy and fast, and the bonding is strong. Microchips fabricated from this material have been applied for CE separation of small molecules, peptides, proteins and enantiomers. Electric field gradient focusing (EFGF) is an attractive technique, which depends on an electric field gradient and a counter-flow to focus, concentrate and separate charged analytes, such as peptides and proteins. I used the PEG-functionalized copolymer to fabricate EFGF substrates. The separation channel was formed in an ionically conductive and protein resistant PEG-functionalized hydrogel, which was cast in a changing cross-sectional cavity in the plastic substrate. The hydrogel shape was designed to create linear or non-linear gradients. These EFGF devices were successfully used for protein focusing, and their performance was optimized. Use of buffers containing small electrolyte ions promoted rapid ion transport in the hydrogel for achieving the designed gradients. A PEG-functionalized monolith was incorporated in the EFGF separation channel to reduce dispersion and improve focusing performance. Improvement in peak capacity was proposed using a bilinear EFGF device. Protein concentration exceeding 10,000-fold was demonstrated using such devices.
|
57 |
Computational and Experimental Investigation of the Critical Behavior Observed in Cell Signaling Related to Electrically Perturbed Lipid SystemsGoswami, Ishan 16 October 2018 (has links)
Problem Statement: The use of pulsed electric fields (PEFs) as a tumor treatment modality is receiving increased traction. A typical clinical procedure involves insertion of a pair of electrodes into the tumor and administration of PEFs (amplitude: ~1 kV/cm; pulse-width: 100 μs). This leaves a zone of complete cell death and a sub-lethal zone where a fraction of the cells survive. There is substantial evidence of an anti-tumor systemic immune profile in animal patients treated with PEFs. However, the mechanism behind such immune profile alterations remains unknown, and the effect of PEFs on cell signaling within sub-lethal zones remains largely unexplored. Moreover, different values of a PEF pulse parameter, for e.g. the pulse-widths of 100 μs and 100 ns, may have different effects on cell signaling. Thus, the challenge of answering the mechanistic questions is compounded by the large PEF parameter space consisting of different combinations of pulse-widths, amplitudes, and exposure times.
Intellectual merit: This Ph.D. research provides proof that sub-lethal PEFs can enhance anti-tumor signaling in triple negative breast cancer cells by abrogating thymic stromal lymphopoietin signaling and enhancing stimulatory proteins such as the tumor necrosis factor. Furthermore, experimental evidence produced during this Ph.D. research demonstrates that PEFs may not directly impact the intracellular mitochondrial membrane at clinically relevant field amplitudes. As demonstrated in this work, PEFs may influence the mitochondria via an indirect route such as disruption of the actin cytoskeleton and/or alteration of ionic environment in the cytoplasm due to cell membrane permeabilization. Thus, a reductionist approach to understanding the influence of PEFs on cell signaling is proposed by limiting the study to membrane dynamics. To overcome the problem of investigating the entire PEF parameter space, this Ph.D. research proposes a first-principle thermodynamic approach of scaling the PEF parameter space such that an understanding developed in one regime of PEF pulse parameter values can be used to understand other regimes of the parameter space. Demonstration of the validity of this scaling model is provided by coupling Monte-Carlo methods for density-of-states with the steepest-entropy-ascent quantum thermodynamic framework for the non-equilibrium prediction of the lipid membrane dynamics. / Ph. D. / A complete cure for cancer is still far from being realized despite very promising developments on the front of molecular drug therapy. One promising conceptual approach would be to achieve the ability to re-tune the cancerous signals that drive disease progression. To overcome current challenges in tuning cancerous signaling a paradigm change in cancer treatment is necessary. For example, a treatment strategy to alter cell signaling which leverages both the physical and chemical properties that accompany malignancy may be required. Electric fields, be it in the form of low-amplitude steady state fields or high-amplitude pulsed electric fields (PEFs), can induce distinct physical and chemical effects on cells. Hence, the use of electric fields as a clinical tumor treatment modality is receiving increased traction. However, the effect of these electric fields on cell signaling and cell behavior remains largely unexplored. This Ph.D. work provides experimental evidence that PEFs can directly impact cancerous cell signaling towards a less inflammatory and possibly less cancerous state. Although a noteworthy finding, the data poses another challenging question, i.e., how does the electric field impact cell behavior? Answering this mechanistic question is essential for FDA approval and a broader clinical use of the electric field modalities. An impediment to answering this question is the vast parameter space of electric fields (e.g., amplitude, pulse width, and number of pulses), which makes performing experimental mechanistic studies untenable. It is argued via experimental evidence gathered during this work that applying scaling laws applicable to lipid membranes may provide a solution to reducing the candidate PEF parameters to a manageable number. A non-equilibrium thermodynamic model is proposed that allows studying the behavior of lipid species using scaled electric field parameters. Thus, the v understanding gained via the proposed model can direct the next level of extensive biological assays and animal studies and eventually lead to effective cancer treatments.
|
58 |
Electrohydrodynamic Control of Convective Condensation Heat Transfer and Pressure Drop in a Horizontal Annular ChannelSadek, Hossam 12 1900 (has links)
<p> The objective of this research is to investigate the effect of DC, AC and pulse wave
applied voltage on two-phase flow patterns, heat transfer and pressure drop during
tube side convective condensation of refrigerant HFC-134a in an annular channel. Experiments
were performed in a horizontal, single-pass, counter-current heat exchanger
with a rod electrode placed along the center of the tube. The electric field was applied
across the annular gap formed by the electrode connected to the high-voltage source
and the grounded surface of the inner tube of the heat exchanger. The electric field
between the two electrodes was established by applying a high voltage to the central
electrode. The high voltage was generated by amplifying the voltage output from a
function generator. The flow was visualized at the exit of the heat exchanger using
a high speed camera through a transparent quartz tube coated with an electrically
conductive film of tin oxide.</p> <p> The effect of a 8 kV DC applied voltage was investigated for mass flux in the range 45 kg/m^2s to 160 kg/m^2s and average quality of Xavg= 45%. The application of the 8 KV DC voltage increased heat transfer and pressure drop by factor 3 and 4.5 respectively at the lowest mass flux of 45 kg/m^2s. Increasing the mass flux decreased the effect of electrohydrodynamic forces on the two-phase flow heat transfer and pressure drop.</p> <p> The effect of different AC and pulse wave applied voltage parameters (e.g. waveform, amplitude, DC bias, AC frequency, pulse repetition rate and duty cycle) on heat transfer and pressure drop was investigated. Experiments were performed
with an applied sine and square waveform over a range of frequencies (2 Hz < f < 2 kHz), peak-to-peak voltages (2 kV < Vp-p < 12 kV) and DC bias voltage (-10 kV < VDc < 10 kV), and with an applied pulse voltage of amplitude 12 kV and duty cycle from 10% to 90%. These experiments were performed for a fixed mass flux of 100 kg/m^2s, inlet quality of 70%, and heat flux of 10 kW /m^2. For the same amplitude and DC bias, the pulse wave applied voltage provides a larger range of heat transfer and pressure drop control by varying the pulse repetition rate and duty cycle compared to the sine waveform.</p> <p> The effect of a step input voltage on two phase flow patterns, heat transfer and pressure drop was examined and analyzed for an initially stratified flow. The flow visualization images showed that the step input voltage caused the liquid to be extracted from the bottom liquid stratum toward the center electrode and then pushed to the bulk flow in the form of twisted liquid cones pointing outward from the central electrode. These transient flow patterns, which are characterized by high heat transfer compared to the DC case, diminish in steady state. The effect of the
amplitude of the step input voltage and the initial distance between the electrode and
liquid-vapour interface on the liquid extraction was investigated experimentally and
numerically. At sufficiently high voltages, the induced EHD forces at the liquid-vapour
interface overcame the gravitational forces and caused the liquid to be extracted
towards the high voltage electrode. The extraction time decreased with an increase
of the applied step voltage and/ or decrease of the initial distance between liquid
interface and the high voltage electrode. The numerical simulation results were, in
general, in agreement with the experimental results.</p> <p> The effect of pulse repetition rate of pulse applied voltage on two phase flow patterns, heat transfer and pressure drop can be divided into three regimes. At the low pulse repetition rate range, f < 10 Hz, the two-phase flow responded to the induced EHD forces, and liquid was extracted from the bottom stratum to the center electrode and then pushed back to the bulk flow in the form of twisted liquid cones. Increasing the pulse repetition rate in this range increased the repetition of the extraction cycle and therefore increased heat transfer and pressure drop. In the mid pulse repetition rate range, 10 Hz < f < 80 Hz, the extraction was not completed, which led to lower heat transfer compared to the lower pulse repetition rate range. In this range, the
two phase patterns were characterized by liquid-vapour interface oscillations between
the center electrode and the bottom stratum and liquid droplet oscillations which
increased the momentum transfer and therefore pressure drop. Increasing the pulse
repetition rate in this range decreased heat transfer and increased pressure drop. In
the high pulse repetition rate range, f > 80 Hz, increasing the pulse repetition rate
decreased both the interfacial and droplet oscillations and therefore decreased the
heat transfer and pressure drop till the two phase flow patterns resembled that for
an applied DC voltage. For the same pulse repetition rate, increasing the mass flux
decreased the effect of EHD forces on heat transfer and pressure drop. The heat
transfer enhancement ratio and pressure drop ratio increased with an increase of the
duty cycle for the same pulse repetition rate of the applied voltage.</p> <p> Different combinations of pulse repetition rate and duty cycle of applied pulse
wave voltage can be used to achieve different values of heat transfer and pressure drop.
This can be very beneficial for heat transfer control in industrial applications. An
advantage of such control is that it eliminates various measurements devices, control
and bypass valves, variable speed pumps, fans and control schemes used in current
technology for heat transfer and pressure drop control. The range of control of the
ratio of the heat transfer coefficient to the pressure drop is from 8.24 to 20.56 for mass flux of 50 kg/m^2s and it decreased with increasing mass flux untill it reached
1.63 to 3.81 at mass flux 150 kg/m^2s.</p> / Thesis / Doctor of Philosophy (PhD)
|
59 |
Microwave Propagation in n-type Germanium Subjected to a High Electric FieldRahman, Mohammad 04 1900 (has links)
<p> A method for the measurement of the microwave conductivity
of a semiconductor subjected to a high electric field is described,
which provides for varying angles between the microwave and applied
electric field vectors. The results of measurements on 10 ohm-em.
n-type germanium at 9.522 GHz with applied electric fields up to
3KV/cm are given. </p> <p> The measurements show that the microwave conductivity is
controlled by the differential carrier mobility (∂V/∂E) for the condition
of microwave and applied electric field vectors parallel. For the case of the fields at right angles the microwave conductivity is controlled by a carrier mobility intermediate between the
d. c. mobility (v/B) and the differential mobility (∂V/∂E). </p> <p> Theoretical expressions for the performance of a proposed "Hot Electron Microwave Rotator" are developed. </p> / Thesis / Master of Engineering (MEngr)
|
60 |
Heat Transfer to a Droplet Translating in an Electric FieldSubramanian, Rajkumar 27 May 2005 (has links)
No description available.
|
Page generated in 0.0658 seconds