• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cost analysis of foundations and towers for a 230 kv transmission line over desert terrain

Dombrow, Roman Joseph, 1913- January 1951 (has links)
No description available.
2

Overhead transmission line tower distribution and conductor forces

Barrien, John. January 1979 (has links) (PDF)
Typescript (photocopy)
3

An evaluation of the utility of four in-situ test methods for transmission line foundation design

Mullen, W. G. 11 July 2007 (has links)
A major powerline is typically supported by many widely spaced structures. Each structure is, in turn, supported by a foundation or foundations. The prevailing philosophy behind transmission structure design to date has been based on the notion that information for geotechnical conditions is sparse and relatively simple in nature. Within this context, it is useful to note that one mile of construction for a routine lattice tower line, can involve twenty five to thirty separate foundations. More accurate soils data can allow for more efficient (smaller) foundation designs with consequent reductions in construction and material costs for the construction. This research examines four existing in-situ soil strength testing methods; standard penetration test (SPT), the cone penetrometer (CPT), the flat plate dilatometer (DMT), and the pressuremeter (PMT). Soils data were collected at eight separate sites using each of the devices. The test sites were chosen to mirror soil conditions encountered within the service territory of Virginia Power, the project sponsor. A total of 19 standard soil borings, 30 cone penetrometer soundings, 26 dilatometer soundings, and 33 pressuremeter tests were undertaken in residual, alluvial and marine clay soil conditions. The testing program was conducted with five areas of concern: (1) comparison of the penetration/ stiffness data from the four tests, (2) comparison of values of undrained shear strength and angle of internal friction developed from each of the test methods, (3) determination if pressuremeter data can be correlated to and thereby developed from one of the more rapid tests, (4) comparison of indirect soil type identifications from the cone and dilatometer with laboratory identifications from the standard borings, (5) development of information on the relative effort required for each test. Comparison of the penetration resistance stiffness data produced useful correlations among the CPT and DMT, with the SPT data yielding more erratic results. Shear strength data was most consistent for the marine clay sites, while the CPT and DMT returned useful friction angle data in the alluvial sands. PMT data correlated well to both the CPT and DMT test results. Correlation of PMT results to the SPT was more erratic. Indirect soil identification from the CPT and DMT was fully adequate for transmission line foundation design purposes, and finally, useful comparative data on the relative testing time required for the four insitu tests was developed. / Ph. D.
4

A study of pole top fires on 22kV wood pole power lines in KwaZulu-Natal.

Persadh, Ajith Koowarlall. January 2007 (has links)
The majority of Eskom's 22kV lines use wood as the support structure material. The economics of wood pole cross arms and their flashover withstand capabilities outweigh those of steel cross arms. However, wood pole structures are vulnerable to what is known as a Pole Top Fire. When insulators and wood cross arms become polluted, small and sustained leakage currents flow along the surface of the insulator and thereafter into the wood itself. This eventually leads to burning of the wood. Many of the 22kV lines traverse vast rural lands, going over people's path ways. If this fire is not discovered timeously, it can cause breakage of the relevant cross arm or the pole itself. A broken cross arm usually causes the outer phase conductor to hang between one and two meters above ground. When it's dark, rural inhabitants cannot see clearly and walk directly into these low lying energized conductors which cause severe injuries and often fatalities. Low hanging conductors cannot be detected electrically and are potentially hazardous to humans and animals. Safety is currently one of the highest priorities for Eskom Distribution and hence there is a dire need to mitigate Pole Top Fires. The researcher hypothesizes that the implemented mitigating technique of bonding does not eliminate Pole Top Fires. In this study accurate statistics on Pole Top Fires in KwaZulu - Natal are provided and causes of fires investigated to provide an understanding thereof. Two basic mechanisms of burning have been identified and explained. These are surface tracking and sparking, and internal sparking. This has helped to explain what mitigation techniques will be effective. A critical analysis on the performance of recommended mitigation techniques is conducted. This study therefore aims to conclude on the effectiveness of implemented techniques to mitigate Pole Top Fires. By comprehensive and critical analysis of a complex operational and safety related problem technical options for mitigating or eliminating the fires are identified, critically analyzed and only those options that are really technically feasible are proposed. This has not been properly done in Eskom before. It is within this context that this research has been undertaken. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.
5

Probabilistic Determination of Failure Load Capacity Variations for Lattice Type Structures Based on Yield Strength Variations including Nonlinear Post-Buckling Member Performance

Bathon, Leander Anton 01 January 1992 (has links)
With the attempt to achieve the optimum in analysis and design, the technological global knowledge base grows more and more. Engineers all over the world continuously modify and innovate existing analysis methods and design procedures to perform the same task more efficiently and with better results. In the field of complex structural analysis many researchers pursue this challenging task. The complexity of a lattice type structure is caused by numerous parameters: the nonlinear member performance of the material, the statistical variation of member load capacities, the highly indeterminate structural composition, etc. In order to achieve a simulation approach which represents the real world problem more accurately, it is necessary to develop technologies which include these parameters in the analysis. One of the new technologies is the first order nonlinear analysis of lattice type structures including the after failure response of individual members. Such an analysis is able to predict the failure behavior of a structural system under ultimate loads more accurately than the traditionally used linear elastic analysis or a classical first order nonlinear analysis. It is an analysis procedure which can more accurately evaluate the limit-state of a structural system. The Probability Based Analysis (PBA) is a new technology. It provides the user with a tool to analyze structural systems based on statistical variations in member capacities. Current analysis techniques have shown that structural failure is sensitive to member capacity. The combination of probability based analysis and the limit-state analysis will give the engineer the capability to establish a failure load distribution based on the limit-state capacity of the structure. This failure load distribution which gives statistical properties such as mean and variance improves the engineering judgment. The mean shows the expected value or the mathematical expectation of the failure load. The variance is a tool to measure the variability of the failure load distribution. Based on a certain load case, a small variance will indicate that a few members cause the tower failure over and over again; the design is unbalanced. A large variance will indicate that many different members caused the tower failure. The failure load distribution helps in comparing and evaluating actual test results versus analytical results by locating an actual test among the possible failure loads of a tower series. Additionally, the failure load distribution allows the engineer to calculate exclusion limits which are a measure of the probability of success, or conversely the probability of failure for a given load condition. The exclusion limit allows engineers to redefine their judgement on safety and usability of transmission towers. Existing transmission towers can be reanalyzed using this PBA and upgraded based on a given exclusion limit for a chosen tower capacity increase according to the elastic analysis from which the tower was designed. New transmission towers can be analyzed based on the actual yield strength data and their nonlinear member performances. Based on this innovative analysis the engineer is able to improve tower design by using a tool which represents the real world behavior of steel transmission towers more accurately. Consequently it will improve structural safety and reduce cost.
6

Experimental and Analytical Studies on Damage Detection and Failure Analysis of Transmission Towers and Tower like Structures

Balagopal, R January 2016 (has links) (PDF)
The transmission line (TL) tower is an important component in electrical network system. These towers consist of members (angle sections) and connections (bolted connections) plus foundation, which act together to resist externally applied loads. The latticed towers are used to support conductors in transmission network for transmission and distribution of electricity. These towers are constructed in large numbers all over the world. The connections in electric TL classical latticed towers are peculiar compared to other types of bolted connections in buildings and bridges because (i) the angle members are connected directly or through gusset plates with bolts, (ii) the eccentric application of load due to the non-coincidence of centroid axes of angle members near the connection and (iii) members are designed as beam column element to sustain tensile or compressive forces. Bearing type bolts are used in TL towers in preference to friction type bolts, because they (i) connect thin walled angle members, (ii) are easy to use for erection at all heights, (iii) can be galvanized, (iv)erosion of galvanizing can be remedied and (v) do not require skilled personnel for installation. However, these connections are subjected to reversal of stresses due to wind load. Damage in the bolted connections generally occur due to loosening of bolts due to stress reversals (Feenstra et al. (2005) [23). The damage induced after extreme wind and earthquake may lead to collapse of the whole tower. The failure of a TL tower results in power shut down, which has huge impact on national economy. Hence, the structural safety and reliable performance of these towers are extremely important. The design of TL tower is based on minimum weight philosophy. The TL towers are highly repetitive and therefore, their designs need to be commercially competitive. The TL tower design has the following deficiencies such as misappropriate design assumptions, deficit detailing, defects in material, errors in fabrication, force fitting of members during erection, variation in grade of bolts, improper gusset plate detailing, notch cutting of member, vocalization of bolt holes, etc. Hence, to check the design and detailing aspects of members along with bolted connections and to study the behavior of tower under complex loading conditions, the prototype testing of tower is made mandatory requirement in many countries throughout the world. The structural behavior of TL tower is determined from its deflection response. Thus, the full scale testing of the towers is the only way that one can counteract the un conservatism due to structural analysis. The premature failure of TL towers occurs during prototype testing due to deficiencies in joint detailing, uncertainties in framing eccentricity, force fitting of members, unequal force distribution in bolts and gusset plate connections, etc. To have better structural response of TL tower to be tested, there is need to develop reliable model for bolted connections in TL towers. The bolted connection model plays an important role in determining the deflection response and predicting the premature member buckling failure of TL towers. The issues related to prototype testing of full scale TL towers such as fabrication errors, force fitting and notch cutting of members, application of loads, joint and crossarm detailing are discussed. The need to develop bolt slip model to simulate the actual behaviour of bolted connection in TL towers is also discussed. The bolted connections in TL towers play an important role in determining its structural behavior. The angle members used in TL towers are subjected to bi-axial bending in addition to axial load. The slip will occur in the bolted connections, due to the provision 1.5 mm bolt hole clearance. In the conventional Finite Element Analysis (FEA), the bolted connections are modeled as pin joint assuming the axial load transfer. The deflection predicted from pin joint analysis in TL towers generally does not match with experimental results. The analytical and experimental deflection value varies in the range of 30 to 50%. Hence, there is need to develop model to account bolt slip for accurate deflection and dynamic characteristic prediction of TL towers. Experimental and analytical investigations have been carried out to develop and validate bolt slip model for bolted connections in TL towers. All six degrees of freedom (both translational and rotational) have been considered to simulate the exact behaviour of bolted connections in TL towers. The model is developed based on experimental results of Ungkurapinan’s bolt slip model for axial stiffness. The rotational stiffness is formulated based on the component level experiment conducted on lap joint made of steel angle with single and double bolt subjected to tensile loading. The axial and rotational stiffness for different stages of bolt tightening is also formulated based on component level experimental investigation on lap joint. The proposed model is validated by comparing with experimental results at sub-structural level on full scale king post truss subjected to tensile loading. Further the bolt slip model is validated for different bolt tightening and failure prediction of TL tower sub panel subjected to tensile loading. Finally the proposed model is also validated for full scale TL tower for deflection prediction. NE NASTRAN, a nonlinear finite element analysis (FEA) software is used for analytical simulation and the load-deflection predictions, which are compared with the corresponding experimental results. The experimental and analytical results are in good agreement with each other. The steel pole structures are replacing the conventional lattice towers, because they have smaller plan dimension and occupy less space, when compared to lattice towers. The steel pole structures are dynamically sensitive structures and the determination of their natural frequency is extremely important. For the calculation of wind load through gust factor method, the preliminary estimation of natural frequency is required. Hence, the primary step involved in dynamic analysis is the evaluation of its natural frequency. Hence, a simplified model is proposed based on model order reduction technique for the evaluation of natural frequency of TL towers and steel pole structures. For the development of base line model to detect damage in TL towers, the natural frequency has to be updated. A semi empirical approach is proposed based on the deflection by using the proposed bolt slip model. The proposed approach of updating natural frequency is validated for different cases of member damage in TL tower sub panel, such as removal of tension, compression and hip bracing members. The transmission pole structures accumulate damage during their service life. Damage in these structures will cause a change in stiffness of the system and the physical properties of these structures, such as modal frequencies and mode shapes. Hence in the present study, the damage localization study based on modified modal strain energy approach is carried out for steel pole structures and the location of damage is identified correctly. To prevent premature failure of towers during its service life testing and failure analysis of TL towers is a mandatory requirement. In the present study, forensic failure investigation of a full scale TL tower due to deficient design of a redundant member is emphasized and the remedial measures are explained in detail. The stub failure of TL tower due to reduction in cross sectional area due to unfilled bolt hole is also discussed. To investigate the effect of unfilled bolt holes on the compression capacity of leg member, detailed FEA is carried out and compared with experimental results. The reason for failure of 9 m roof top communication tower due to redundant member deficiency is also discussed. The importance of guyed tower accessories in the guy rope design of 7 m roof top guyed pole structure is also investigated. Finally, failure investigation of compression bracing member, which has failed during testing of TL tower sub panel has been investigated. The failure load is predicted by using the proposed bolt slip model in the analysis. Thus the overall research contributions emerging from this thesis are, i) development of bolt slip model accounting for rotational stiffness, ii) development of direct method of damage detection for steel pole structures based on modified modal strain energy approach, iii) development of simplified model for prediction of natural frequency of TL tower and steel pole structures, iv) development of model updating technique through natural frequency based on semi-empirical approach and v) prediction of failure load for TL tower panel using the proposed bolt slip model.

Page generated in 0.1023 seconds