• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 17
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 165
  • 165
  • 165
  • 165
  • 94
  • 38
  • 28
  • 24
  • 23
  • 19
  • 19
  • 18
  • 17
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

An analysis and improvement of selected features of power quality of grid-tied alternative energy systems

Gupta, Gunjan January 2018 (has links)
Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2018. / Electrical energy can be easily used and converted to other forms of energy for various applications. Technological advancement increases the dependency on electricity to a great extent. Various internal and external factors are responsible for the bad quality of power in power systems. The performance of the system is greatly affected by the presence of harmonics, as well as voltage and frequency variations, which leads to the malfunctioning of the device and decline of power quality and supply at load side. The reactive power compensation is carried out for better power quality. The literature survey is done to find the best and efficient scheme for reactive power compensation and mitigation of various power quality problems. The devices which are used to measure various power quality factors are discussed. Various mitigating schemes are surveyed in order to compensate reactive power and to improve the power quality at the distribution end. The integration of the most widely used renewable energy, wind energy in the distribution system creates technical issues like stability of the grid, harmonic distortion, voltage regulation, active and reactive power compensation etc. which are restricted to IEC and IEEE standards. One of the topics this thesis addresses is regulation in the reactive power generated along with voltage regulation by using an effective power electronics device known as a STATCOM. The main power quality factors like overvoltage and voltage flickers are mitigated by establishing STATCOMs in small wind farms. The wind farms are equipped with three wind turbines. These three wind turbines found in the wind farm can be operated together or one after another with an introduced delay. A glitch in even a little piece of a power grid can result in loss of efficiency, income and at times even life. In this manner, it is basic to outline a system which can distinguish the faults of the power system and take a faster response to recover it back to required reactive power. Two devices STATCOM and D-STATCOM are used for this purpose in this thesis. The D-STATCOM circuit and operating principle are also discussed in thesis. Different topologies of D-STATCOM discussed with their benefits and shortcomings. The voltage, current and hybrid technologies of D-STATCOM are also discussed.
132

Development and assessment of reduced order power system models

Nteka, Makhetsi Flora January 2013 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2013 / The demand for electrical energy has kept on increasing, thus causing power systems to be more complex and bringing the challenging problems of electrical energy generation, transmission, stability, as well as storage to be examined more thoroughly. With the advent of high-speed computation and the desire to analyze increasingly complex behaviour in power systems, simulation techniques are gaining importance and prevalence. Nevertheless, while simulations of large, interconnected complex power systems are feasible, they remain time-consuming. Moreover, the models and parameters used in simulations are uncertain, due to measurement uncertainty, the need to represent a complex behaviour with low-order models, and the inherent changing nature of the power system. This research explores the use of a model reduction technique and the applications of a Real-Time Digital Simulator (RTDS) to reduce the uncertainty in large-scale complex power system models. The main goal of the research is to develop a reduced order model and to investigate the applications of the RTDS simulator in reduction of large, interconnected power systems models. The first stage of the study is to build and simulate the full model of the power system using the DigSILENT and RTDS simulators. The second phase is to apply model reduction technique to the full model and to determine the parameters in the reduced-order model as well as how the process of reduction increases this model uncertainty. In the third phase the results of the model reduction technique are compared based on the results of the original model - IEEE standard benchmark models has been used. The RTDS was used for comparative purposes. The thesis investigations use a particular model reduction technique as Coherency based Method. Though the method ideas are applicable more generally, a concrete demonstration of its principles is instructive and necessary. Further, while this particular technique is not relevant to every system, it does apply to a broad class of systems and illustrates the salient features of the proposed methodology. The results of the thesis can be used in the development of reduced models of complex power systems, simulation in real-time during power system operation, education at universities, and research. Keywords: IEEE benchmark models, reduced models, Coherency based Method, DigSILENT, RTDS, model uncertainty, power system stability
133

Evaluation of Voltage Instability Countermeasures in Constrained Sub-transmission Power Networks

Jones, Peter Gibson 01 January 2012 (has links)
This paper investigates the various parameters that effect voltage stability in sub-transmission power networks. The paper first looks at contributions from equipment: generators, transmission lines, transformers, capacitors, SVCs and STATCOMs. The paper also looks at the effects of loads on voltage stability. Power flow solutions, PV and VQ curves are covered. The study models an existing voltage problem i.e., a long, radial, 115 kV sub-transmission network that serves a 65 MW load. The network model is simulated with the following voltage instability countermeasures: adding a capacitor, adding an SVC, adding a STATCOM, tying to a neighboring transmission system, adding generation and bringing in a new 230 kV source. Then, using the WECC heavy-winter 2012 power flow base case and Siemens PTI software, VQ and PV curves are created for each solution. Finally, the curves are analyzed to determine the best solution.
134

Reduced order power system models for transient stability studies

Anderson, Sharon Lee 05 September 2009 (has links)
As the load on the power system grows and new transmission facilities become increasingly difficult to build, the utilities must look to ways to make the most of the current transmission system. Adaptive relaying is one way to enhance the ability of the power system. On the Florida - Georgia interface an adaptive out-of-step relay is being installed. This relay determines if swings on the power system will remain stable by performing a better then real-time transient stability study. Because of the computing capacity required for a transient stability study, the study cannot be performed on the full power system. A reduced model must be used. In this thesis, various methods of obtaining reduced models for use in the relay will be explored. The models will be verified with a full system model using Electric Power Research Institute's (EPRI) Extended Transient-Midterm Stability Package (ETMSP). / Master of Science
135

The influence of atmospheric conditions on the detection of hotspots inside a substation yard

Kleynhans, Rodney January 2012 (has links)
Thesis (M. Tech. Electrical engineering) -- Central University of technology, Free State, 2012 / Infrared thermography is a non-contact method of identifying the thermal behaviour of various plant equipment and machines, including their components, qualitatively via pattern recognition and quantitatively via statistical analysis. This allows for the development of condition monitoring and predictive failure analysis. It is well established that optimized maintenance planning can be more effective when a problem is detected in the early stages of failure. For example, in electrical systems an elevated electrical resistance caused by loose or corroded connections, broken conductor strands and dirty contact surfaces, results in localized heating, and a unique infrared pattern when analysed leads to the location of the problem and an indication of its severity. In recent years industrial thermography has used infrared detectors in the long wave portion of the electromagnetic spectrum normally between 8μm and 15μm, due partly to the fact that these wavelengths are not susceptible to solar radiation and/or solar glint. A number of scientific experiments were carried out on test apparatus to improve the understanding of the impact of convection, ambient air temperature and relative humidity on resultant infrared thermal images. Two similar heat sources, simulating a hotspot, at different temperature settings were used to determine whether the hotspot temperature should also be considered in conjunction with the atmospheric elements. The need for these experiments has also been identified by EPRI (Electrical Power Research Institute) in the USA as necessary to develop international severity criteria, and it is hoped that this study will contribute to this goal.
136

Area COI-based slow frequency dynamics modeling, analysis and emergency control for interconnected power systems

Du, Zhaobin, 杜兆斌 January 2008 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
137

Coordination of power system controllers for optimal damping of electromechanical oscillations

Gianto, Rudy January 2008 (has links)
This thesis is devoted to the development of new approaches for control coordination of PSSs (power system stabilisers) and FACTS (flexible alternating current transmission system) devices for achieving and enhancing small-disturbance stability in multi-machine power systems. The key objectives of the research reported in the thesis are, through optimal control coordination of PSSs and/or FACTS devices, those of maintaining satisfactory power oscillation damping and secure system operation when the power system is subject to persisting disturbances in the form of load demand fluctuations and switching control. Although occurring less frequently, fault disturbances are also considered in the assessment of the control coordination performance. Based on the constrained optimisation method in which the eigenvalue-based objective function is minimised to identify the optimal parameters of power system damping controllers, the thesis first develops a procedure for designing the control coordination of PSSs and FACTS devices controllers. The eigenvalue-eigenvector equations associated with the selected electromechanical modes form a set of equality constraints in the optimisation. The key advance of the procedure is that there is no need for any special software system for eigenvalue calculations, and the use of sparse Jacobian matrix for forming the eigenvalue-eigenvector equations leads to the sparsity formulation which is essential for large power systems. Inequality constraints include those for imposing bounds on the controller parameters. Constraints which guarantee that the modes are distinct ones are derived and incorporated in the control coordination formulation, using the property that eigenvectors associated with distinct modes are linearly independent. The robustness of the controllers is achieved very directly through extending the sets of equality constraints and inequality constraints in relation to selected eigenvalues and eigenvectors associated with the state matrices of power systems with loading conditions and/or network configurations different from that of the base case. On recognising that the fixed-parameter controllers, even when designed with optimal control coordination, have an inherent limitation which precludes optimal system damping for each and every possible system operating condition, the second part of ii the research has a focus on adaptive control techniques and their applications to power system controllers. In this context, the thesis reports the development of a new design procedure for online control coordination which leads to adaptive PSSs and/or supplementary damping controllers (SDCs) of FACTS devices for enhancing the stability of the electromechanical modes in a multi-machine power system. The controller parameters are adaptive to the changes in system operating condition and/or configuration. Central to the design is the use of a neural network synthesised to give in its output layer the optimal controller parameters adaptive to system operating condition and configuration. A novel feature of the neural adaptive controller is that of representing the system configuration by a reduced nodal impedance matrix which is input to the neural network.
138

A new proposed method of contingency ranking

Gossman, Stephanie Mizzell 18 May 2010 (has links)
Security analysis of a power system requires a process called contingency analysis that analyzes results from all possible single contingencies (i.e. outages) in the system. The process of contingency analysis requires the definition of a parameter that is used to monitor a certain aspect of the system, which is called a performance index. The performance index definitions used traditionally have been highly nonlinear, and the results have not accurately predicted the outcome of the performance index in some cases. These incorrect results are referred to as misrankings since the contingency results are usually placed in order of severity so that the most severe cases are evident. This thesis considers a new definition of contingency ranking using a more linearized definition of the performance index. The construction of both the new, proposed definition and the classic definition both consider the current loading of circuits in the system as compared to their rated values. Specifically, the parameter measured by the proposed definition measures the difference, while the more nonlinear definition uses a ratio of the two quantities, which is then raised to a higher power. A small, four bus test system is used to demonstrate the benefits of the new, more linearized definition. The average percent error for all single line contingencies of the system decreased by over 9.5% using the proposed definition as compared to the previous one. This decrease in error allows this performance index to monitor a similar parameter (comparing current loading and current rating of the lines) and achieve a higher degree of accuracy. Further linearization of this proposed definition also shows a reduction in the average percent error by an additional 22% so that when compared to the original, highly nonlinear definition, the average error is reduced by almost 30%. By linearizing the definition of the performance index, the results are more accurate and misrankings are less likely to occur from the security analysis process.
139

Application of synchrophasors in multi-machine power system transient stability analysis.

Mazibuko, Thokozile Fortunate. January 2014 (has links)
M. Tech. Engineering: Electrical. / Discussing the developing an entirely software based synchrophasor platform for transient stability analysis of a multi-machine system by exploiting the possibility of distributing a precise time reference by means of communication networks and an open source software-only Precision Time Protocol (PTP) to synchronise PMUs and evaluates the precision of this synchronisation in the event of faults in a power system.
140

Application of artificial intelligence algorithms in solving power system state estimation problem.

Tungadio,Diambomba Hyacinthe-St, January 2013 (has links)
M. Tech. Electrical Engineering. / Discusses the practical management of electrical networks, no perfect monitoring of an electrical power system state is available, either because it is expensive or technically unfeasible due to the poor quality of the available measurements in the control centre. To have a stable network, the control centre must receive the network information to be able to provide a proper security in unforeseen situation. As a power system network is a complex and a non-linear system, it is important to use more advanced methods for its analysis and control in a real time environment. The aim of this research work is therefore, to apply several state estimation algorithms using artificial intelligence by developing their mathematical models for the purpose of comparing their performances in estimating the state variable of the power system. The three types of state estimation algorithms investigated for this research work are: the Particle Swarm Optimisation (PSO), the Genetic Algorithm (GA) and the Newton method for state estimation (NSE).

Page generated in 0.0914 seconds