• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transportation relay network design

Hunt, Gregory William 08 1900 (has links)
No description available.
2

OFDM-based cooperative communications in a single path relay network and a multiple path relay network

Wu, Victor Kai Yuen. January 2006 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2007. / Gordon Stuber, Committee Member ; John Barry, Committee Member ; Geoffrey Li, Committee Chair.
3

Evaluation of overcurrent protection performance and application on the Eskom shunt capacitors during system disturbances.

Boodhraj, Revana. January 2009 (has links)
This dissertation report began as an investigation into an overcurrent relay protection operation on a shunt capacitor bank (SCB) at ESKOM’s Westgate substation. Westgate substation has two SCBs, both of which were in service at the time of the 2007 incident. However, only the overcurrent protection scheme applied on SCB No.2 operated due to an external feeder fault on the Eltro feeder at Westgate substation. In 2004, SCB No.2 had tripped also on an overcurrent relay protection operation for an external fault. The difference identified in the otherwise identical SCBs was the relay technology employed by the overcurrent protection schemes i.e. electromechanical and electronic overcurrent relays were utilised. Therefore an investigation was initiated to determine any difference in the performance and reliability of overcurrent relay technologies in the SCB environment. The purpose of this work is to present the performance of the different technologies of overcurrent relays (electromechanical, electronic and digital) as applied to an ESKOM SCB during system disturbances and to compare their operation and behaviour. MatLAB and DigSILENT simulation packages were used to conduct preliminary fault studies to determine overcurrent relay performance, for a definite time overcurrent setting. These simulation results indicated that the simple electromechanical and electronic overcurrent relay could operate incorrectly in the SCB environment, during system disturbances. Practical laboratory tests were also conducted. This comprised of injecting DigSILENT simulations, comprising of system switching events and external faults, into three technologies of overcurrent relays. These Omicron injection tests found that the Westgate electronic relay would operate incorrectly for certain fault events in the SCB environment. Due to the results observed, further frequency response tests were conducted. These results suggested that the electronic and electromechanical overcurrent relays were susceptible to harmonics i.e. harmonics impact both the pick-up current setting and operating time of electronic and electromechanical overcurrent relays. The digital relay did not exhibit this vulnerability. Finally, recommendations were made to address the incorrect operation of the Westgate electronic relay in its SCB application. These recommendations could be applied in other ESKOM SCB overcurrent protection schemes, to prevent incorrect operation for system disturbances. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2009.
4

Measurement and modelling of errors for relaying current transformers and voltage transformers

Vichare, Nitin Shrikrishna 18 April 2009 (has links)
A measurement tool has been developed to estimate errors in relaying current transformers and voltage transformers. The tool has been developed to collect data in a substation and send it to a remote location over a telephone line. Different schemes were evaluated and tested in the laboratory. The final choice was made on the basis of the hardware and transmission cost constraints. The measurement unit was developed using hardware similar to that used in a computer relay. The signals from the current and voltage transducers were sampled using a microprocessor and an analog to digital converter in real-time. The measurement device has been installed in the field. The data from the field was collected remotely and analyzed in the Virginia Tech Power Systems laboratory. The analysis of the data is presented at the end. / Master of Science
5

A feasibility study of an adaptive reclosing relay

Vaidyanathan, Sundararaman 01 August 2012 (has links)
Logic for an adaptive reclosing relay has been developed. The relay works correctly in a wide number of fault cases. The relay has the following distinguishing characteristics : (a) Reclosing into a three phase fault is avoided under all circumstances. (b) The logic is applicable only for circuit breakers which. have reclosing on individual phases. (c) The relay works correctly in the case of both (shunt) compensated and uncompensated lines. / Master of Science
6

Reduced order power system models for transient stability studies /

Anderson, Sharon Lee. January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 78-79). Also available via the Internet.
7

Linear minimum mean-square-error transceiver design for amplify-and-forward multiple antenna relaying systems

Xing, Chengwen., 邢成文. January 2010 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
8

Computer relaying for EHV/UHV transmission lines

Yang, Lifeng 21 October 2005 (has links)
As the power systems grow, system connections become more complex. Due to cost and environmental concern, more and more parallel lines and series compensated lines may be installed in the system. In order to efficiently use the transmission network, more nonlinear flexible devices such as the phase shifter and the advanced compensation system will be put into use. Once a fault occurs on such a system, a delay in clearing the fault is usually not permissive. This requires a new generation of relays which have high security and dependability and high operating speed. With the advent of high speed microprocessor and fiber optic communication technologies, it is possible to develop high performance relays. In this dissertation, a new generation of pilot relays and non-pilot relays were developed for a transmission line. The pilot relays include the instantaneous percentage current differential (IPD), the phase comparison and the phasor based percentage current differential (PPD) principles. In the pilot protections the synchronized phasor measurement techniques are employed and digital CT saturation detectors are incorporated. All these schemes in primary protections feature charging current (or shunt current ) compensation. The phasor based principles are designed to work within one and a half cycles; while others based on sample by sample comparison are assumed to work in less than a cycle. The non-pilot relays to be investigated in this dissertation include the fault location based and phase angle based directional distance relays. One cycle data window is used in the phasor calculation. Both the distance relays are assumed to make a trip decision in about one and a half cycles. All algorithms were simulated against different fault conditions using EMTP outputs. The simulation results show all the pilot relay algorithms work well for EHV IUHV transmission lines including the series compensated lines. The fault location based distance relay works well in most cases, but it may give a wrong decision for the close-in fault with the fault resistance and may have a singularity problem. The phase angle based distance relay works very well for different fault conditions and is insensitive to fault resistance. The modified phase angle based distance relay was also developed for the series compensated line. It would not lose the direction for faults with or without fault resistance, either for a compensated system in forward direction, or in an adjacent line in reverse direction. The overreach is within 20% of the protected zone. This relay algorithm is also based on the one-cycle data window DFT, and it can give a reliable trip decision in about two cycles. All pilot relays with a fiber optic link and the phase angle based distance relay can constitute a new generation of protection systems for EHV IUHV transmission lines. / Ph. D.
9

Reduced order power system models for transient stability studies

Anderson, Sharon Lee 05 September 2009 (has links)
As the load on the power system grows and new transmission facilities become increasingly difficult to build, the utilities must look to ways to make the most of the current transmission system. Adaptive relaying is one way to enhance the ability of the power system. On the Florida - Georgia interface an adaptive out-of-step relay is being installed. This relay determines if swings on the power system will remain stable by performing a better then real-time transient stability study. Because of the computing capacity required for a transient stability study, the study cannot be performed on the full power system. A reduced model must be used. In this thesis, various methods of obtaining reduced models for use in the relay will be explored. The models will be verified with a full system model using Electric Power Research Institute's (EPRI) Extended Transient-Midterm Stability Package (ETMSP). / Master of Science
10

OFDM-based Cooperative Communications in a Single Path Relay Network and a Multiple Path Relay Network

Wu, Victor Kai Yuen 10 November 2006 (has links)
In this thesis, we investigate cooperation by applying OFDM signals to cooperative relay networks. We consider the single path relay network and the multiple path relay network. Using the amplify-and-forward relay algorithm, we derive the input-output relations and mutual informations of both networks. Using a power constraint at each relay, we consider two relay power allocation schemes. The first is constant gain allocation, where the amplifying gain used in the amplify-and-forward algorithm is constant for all subcarriers. The second is equal power allocation, where each subcarrier transmits the same power. The former scheme does not require CSI (channel state information), while the latter one does. We simulate the mutual informations using the two relay power allocation schemes. Results indicate that equal power allocation gives a slightly higher mutual information for the single path relay network. For the multiple path network, the mutual information is practically the same for both schemes. Using the decode-and-forward relay algorithm, we derive the input-output relations for both networks. The transmitter and each relay are assumed to have uniform power distributions in this case. We simulate the BER (bit error rate) and WER (word error rate) performance for the two networks using both the amplify-and-forward and decode-and-forward relay algorithms. For the single path relay network, amplify-and-forward gives very poor performance, because as we increase the distance between the transmitter and receiver (and thus, add more relays), more noise and channel distortion enter the system. Decode-and-forward gives significantly better performance because noise and channel distortion are eliminated at each relay. For the multiple path relay network, decode-and-forward again gives better performance than amplify-and-forward. However, the performance gains are small compared to the single path relay network case. Therefore, amplify-and-forward may be a more attractive choice due to its lower complexity.

Page generated in 0.0915 seconds