• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 12
  • 11
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Avaliação da perda de massa de revestimento duro depositado por soldagem com arame tubular de liga FeCrC-Ti

Colaço, Fernando Henrique Gruber 17 June 2013 (has links)
Fundação Araucária / Neste trabalho estudou-se a perda de massa de revestimento duro aplicado pelo processo de soldagem com arame tubular com a variação de energia de soldagem, gás de proteção e número de camadas do revestimento. Com arame tubular autoprotegido de liga Fe-Cr-C-Ti foram depositados cordões simples sobre chapas de aço ao Carbono AISI 1020 para a análise da morfologia, diluição e dureza. Para a análise da perda de massa foram depositados cordões sobreposto formando camadas de revestimento. Por meio de análise de imagem foram feitas medições do reforço, largura e penetração do cordão de solda e, por consequência, obtida a diluição. Foram realizadas medições de dureza na secção transversal dos cordões e na superfície dos corpos de prova de desgaste. Abrasômetro tipo roda de borracha foi usado para determinar a perda de massa dos revestimentos. Os revestimentos apresentaram microestrutura martensítica e austenita retida com carbonetos finamente dispersos na matriz. Os principais fatores que contribuíram para o aumento na perda de massa foram as trincas devido a maior taxa de resfriamento das amostras depositadas com baixa energia de soldagem, a diluição na primeira camada de todas as amostras também contribuíram para o aumento na perda de massa. As menores perdas de massa foram dos revestimentos de duas e quatro camadas depositados com alta energia de soldagem. A fração volumétrica de carbonetos de Titânio contribuíram para a diminuição do caminho livre médio entre as partículas de carbonetos aumentando a resistência ao desgaste dos revestimentos. / In this work we have studied the mass loss of hardfacing applied by flux cored arc welding. Heat input, shielding gas and number of layers coating. Were changed to application of Fe-Cr-Ti-C self-shielded tubular wire. Single beads were deposited on plates of carbon steel AISI 1020 to analyze the morphology, hardness and dilution. For the analysis of mass loss were deposited beads forming overlapped layers coatings. By means of image analysis measurements were made of the reinforcement, width and penetration and, consequently, the dilution obtained. Hardness measurements were performed on cross-section of the beads and the surface of the specimens of wear. Rubber wheel abrasion tester was used to access the mass loss of coatings. The coatings had retained austenite and martensite microstructure with carbides finely dispersed in the matrix. The main factors that contributed to the increase in mass loss were the cracks due to higher cooling rate of the samples deposited with low heat input, the dilution in the first layer of all samples also contributed to the increase in mass loss. The smallest mass losses were those deposited coatings with high heat input the second and fourth layer, the samples AC2, AC4 and AS2. The volume fraction of titanium carbides contributed to the decrease in the mean free path between the particles of carbides increase the wear resistance of the coatings.
62

Manufacturing process modelling of thermoplastic composite resistance welding

Talbot, Edith January 2005 (has links)
No description available.
63

Fracture path transitions in peels tests of medium carbon steel spot welds

Halley, William G. 28 July 2008 (has links)
Fracture path transition, from interfacial fracture to a pulled button, in peel tests of spot welds in SAE 1039 steel was evaluated to determine the controlling material properties. Welds were tested in the as welded condition and after tempering at various temperatures to develop a range of hardness and strength in the weld metal. Two transitions were found, from complete interfacial fracture to partial interfacial and from partial interfacial fracture to a pulled button. Samples tempered at less than 350 °C exhibited complete interfacial fracture while those tempered at 500 °C or higher pulled full buttons. Each transition was accompanied by a large increase in the energy absorbed during fracture. Both partial and complete interfacial fracture occurred by intergranular fracture along prior austenite grain boundaries. Optical microscopy utilizing a tint etch indicated that austenite existed as films on prior austenite grain boundaries of samples tempered at less than 500 °C and TEM confirmed that these films were austenite. Weld metal toughness was found to control the fracture path. If fracture initiation was delayed until the applied load caused plastic deformation of the coupons pulled button fracture occurred. Fracture initiation prior to plastic deformation of the coupons resulted in interfacial or partial interfacial fractures. A small secondary hardening peak was observed in samples tempered at 450 °C. Secondary hardening, which normally results from alloy carbide precipitation, was due to AlN precipitation in this aluminum killed plain carbon steel. / Ph. D.
64

Automatic welding control using a state variable model

Moody, William Vincent January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering; and, (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 70-73. / by William Vincent Moody. / M.S.
65

Soudage par résistance des tôles fines revêtues : formation du noyau dans un assemblage de trois tôles / Resistance spot welding of thin coated steel sheets : nugget development in a three-steel sheet assembly

Geslain, Edouard 23 January 2018 (has links)
Dans l’industrie automobile, les exigences en matière d’émissions polluantes conduisent à alléger les véhicules, notamment en réduisant l’épaisseur des tôles. Ce travail en partenariat avec ArcelorMittal porte sur le soudage par résistance par point de tôles fines d’acier. L’objectif est d’identifier les phénomènes qui induisent les difficultés de soudabilité opératoire rencontrées avec une combinaison dissymétrique de trois tôles revêtues, incluant une tôle très mince galvanisée de moins de 0,6 mm, une tôle de DP600 et une tôle en Usibor® emboutie à chaud. Des observations par caméra infrarouge montrent que les échauffements initiaux se produisent principalement au niveau des interfaces avec la tôle d’Usibor®1500, et que le noyau se forme du côté de cette tôle, loin de la tôle mince. Les valeurs très élevées des résistances de contact électrique et thermique, mesurées aux interfaces avec la tôle d’Usibor®, sont imputables au revêtement Alusi® et sont à l’origine des forts échauffements initiaux observés à ces interfaces. Un modèle numérique, limité aux aspects électrothermiques et développé sur COMSOL Multiphysics®, a permis de montrer que la zone fondue s’initie très rapidement dans la tôle d’Usibor® 1500 sous l’effet des fortes résistances de contact adjacentes, et que son développement en épaisseur et diamètre est piloté par les évolutions des rayons de contact électrode-tôle. Les résistances de contact entre électrode et tôle mince, le profil du courant de soudage et les rayons de courbure des faces actives des électrodes sont les paramètres prépondérants à optimiser pour améliorer la pénétration du noyau dans la tôle mince. / In the automotive industry, the requirements for polluting emissions lead to light vehicles, especially in decreasing the steel sheet thickness. This work in partnership with ArcelorMittal focuses on resistance spot welding of steel sheets. The aim is to identify the phenomena that induce operating weldability difficulties encountered with an asymmetrical stack of three coated steel sheets, including a very thin galvanized sheet of less than 0.6 mm, a sheet of DP600, and a hot stamped Usibor® sheet. Infrared camera observations show that the initial heating takes placeat the interfaces with the Usibor®1500 sheet, and that the nugget appears inside this sheet, away from the thin sheet. The very high values of the electrical and thermal contact resistances, measured at the interfaces with the Usibor®1500 sheet, are due to the Alusi® coating and are at the origin of the strong initial heating at these interfaces. A numerical model, limited to the electro- thermal aspects and developed with COMSOL Multiphysics®, shows that the nugget is initiated very quickly in Usibor®1500 sheet under the effect of adjacent contact resistances, and that its development is driven by the evolutions of the electrode-sheet contact areas. The contact resistances between the electrode and the thin sheet, the welding current evolution, and the curvature radius of electrode tips are the most efficient parameters to be optimized to improve the penetration of the nugget in the thin sheet.
66

The development of a curriculum for a course in manipulative skills for shielded metal arc welding

Miller, Jay 01 January 1997 (has links)
No description available.
67

Modelling of Electric Arc Welding : arc-electrode coupling

Javidi Shirvan, Alireza January 2013 (has links)
Arc welding still requires deeper process understanding and more accurateprediction of the heat transferred to the base metal. This can be provided by CFD modelling.Most works done to model arc discharge using CFD consider the arc corealone. Arc core simulation requires applying extrapolated experimental data asboundary conditions on the electrodes. This limits the applicability. To become independent of experimental input the electrodes need to be included in the arcmodel. The most critical part is then the interface layer between the electrodesand the arc core. This interface is complex and non-uniform, with specific physicalphenomena.The present work reviews the concepts of plasma and arc discharges that areuseful for this problem. The main sub-regions of the model are described, andtheir dominant physical roles are discussed.The coupled arc-electrode model is developed in different steps. First couplingsolid and fluid regions for a simpler problem without complex couplinginterface. This is applied to a laser welding problem using the CFD softwareOpenFOAM. The second step is the modelling of the interface layer betweencathode and arc, or cathode layer. Different modelling approaches available inthe literature are studied to determine their advantages and drawbacks. One ofthem developed by Cayla is used and further improved so as to satisfy the basicprinciples of charge and energy conservation in the different regions of thecathode layer. A numerical procedure is presented. The model, implementedin MATLAB, is tested for different arc core and cathode conditions. The maincharacteristics calculated with the interface layer model are in good agreementwith the reference literature. The future step will be the implementation of theinterface layer model in OpenFOAM.

Page generated in 0.0574 seconds