• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3519
  • 654
  • 654
  • 654
  • 654
  • 654
  • 654
  • 62
  • 4
  • Tagged with
  • 6061
  • 6061
  • 6061
  • 560
  • 518
  • 474
  • 372
  • 351
  • 282
  • 260
  • 237
  • 232
  • 187
  • 184
  • 174
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Reactive Power Considerations in Reliability Analysis of Solar Photovoltaic Systems

Gaikwad, Dattatray N 05 June 2012 (has links)
Reliability is one of the key aspects of power system operation and therefore reliability analysis techniques are well developed. However reliability analysis conventionally takes into account active power and limited attention has been given to reactive power. Reactive power is very essential in maintaining voltage stability of power systems. The voltage constraint at network can restricts active power delivery to the loads and could result in forced load curtailment. This research investigates the effect of reactive power shortage on reliability of power systems with significant penetration of PV cells. The reactive power issues become more significant in distributed generation using renewable energy sources such as photovoltaic (PV) Cells, which operate mostly at unity power factor. The IEEE 14-Bus system is utilized to perform this study. Twenty four state PV generation model was developed based on 24-hour solar radiation trend. Reliability indices are calculated analytically and verified through simulation without considering reactive power shortage. Next, a measure of Expected Energy Not Supplied (EENS) on account of reactive power shortage and voltage violation in network is calculated. Monte Carlo simulation was performed in MATLAB environment, where simulation results are compared with the case without taking into account reactive power and voltage violation. This research suggests that placement of the PV in the network can greatly reduce active and reactive power shortage during the contingencies. The reactive power is studied here from design and planning perspectives for reliable and stable power system operation when high penetrations of PV energy sources are present.
392

Micro Grid Stability Improvements by Employing Storage

Lamichhane, Sumiti 04 June 2012 (has links)
Storage devices can be used in a power gird to store the excess energy when the energy production is high and the demand is low and utilize the stored energy when the produced energy cannot meet the high demands of the consumers. This thesis represents a micro grid consisting of a conventional synchronous generator, as well as renewable energy sources, energy storage, and loads in order to investigate the effective energy flow control and transient stability improvement by employing thermal storage. Thermal storage, unlike electrical one (such as battery) is more environmental friendly, has longer life span, and is more effective in power flow control. In this thesis, resistive and heat pump type thermal storage are proposed and its stability effects on micro grids are evaluated. A suitable model is developed for the thermal storage and the grids stability analysis is adopted by using linearization methods. Consequently, by designing an optimal controller for the storage the stability of the micro grid is improved as verified through the simulations.
393

Effect of Electrical Vehicles on Residential Distribution Systems

Haley, Paul 11 June 2012 (has links)
This thesis focuses on the present state of electrical vehicles (EVs) in the market and the effects that these vehicles could have on residential distribution systems. The current EVs available on the market and the current level of market penetration were investigated. Advantages and disadvantages of EVs from a consumer and governmental perspective were identified. The efficiencies of the whole energy delivery process of electrical vehicles and gasoline vehicles were estimated. Efficiency estimation was used to estimate the impact of EVs on the consumption of fossil fuels and emission of greenhouse gases. Measurement of an EV battery charging cycle and modeling of a residential power system with EV battery charger loads was performed. A computer model was programmed in Matlab to perform harmonic analysis using data from a real residential system. Using this computer model a worst case study was performed, and the level of EV penetration in the system required to cause excessive harmonic distortion was obtained.
394

Microfabrication of Conductive Polymer Nanocomposite for Sensor Applications

Liu, Chaoxuan 13 November 2012 (has links)
This dissertation developed novel microfabrication techniques of conductive polymer nanocomposite and utilized this material as a functional element for various physical sensor applications. Microstructures of nanocomposite were realized through novel microcontact printing and laser ablation assisted micropatterning processes. Prototype devices including large-strain strain sensor and highly-sensitive pressure sensor were demonstrated showing distinct advantages over existing technologies. The polymer nanocomposite used in this work comprised elastomer poly(dimexylsiloxane) (PDMS) as polymer matrix and multi-walled carbon nananotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solventchloroform, which dissolved PDMS base polymer easily and allowed monodispersion of MWCNTs. Following material preparation, three novel approaches were employed to pattern microstructures of polymer nanocomposite, each of which held respective advantages over previous fabrication techniques. For example, microcontact printing, by using a pre-defined stamp, directly transfers nanocomposite patterns from the ink reservoir to a substrate. Therefore, it eliminates the need of repeated photolithography process for every sample, saving time and cost. For another example, two variations of the laser assisted screen printing technique with micropatterns defined by the programmable laser ablation of a thin polymer film, allowed direct filling of nanocomposite and required only a CAD drawing for each design of sensor sample. Two variations of this fabrication protocol realized both fully embedded nanocomposite structures in a bulk polymer, as well as protruding relief-patterns of the nanocomposite on a polymer surface. The sensing capability of the polymer nanocomposite is attributed to the unique combination of mechanical flexibility and electrical piezoresistivity. To demonstrate feasibility for practical sensor applications, two sensor prototypes were constructed. The strain sensor, for example, showed significant resistive response while sample withheld large range tensile strain of over 45%. Also, the fabricated pressure sensor indicated high sensitivity of differential pressure. Each prototype showed distinctive advantages over conventional technologies. Complex hysteresis effects were observed and analyzed regarding the resistance and stress of the nanocomposite, which was followed by discussions of potential polymeric mechanisms.
395

Non-rigid Registration of 2-D/3-D Dynamic Data with Feature Alignment

Xu, Huanhuan 16 November 2012 (has links)
In this work, we are computing the matching between 2D manifolds and 3D manifolds with temporal constraints, that is we are computing the matching among a time sequence of 2D/3D manifolds. It is solved by mapping all the manifolds to a common domain, then build their matching by composing the forward mapping and the inverse mapping. At first, we solve the matching problem between 2D manifolds with temporal constraints by using mesh-based registration method. We propose a surface parameterization method to compute the mapping between the 2D manifold and the common 2D planar domain. We can compute the matching among the time sequence of deforming geometry data through this common domain. Compared with previous work, our method is independent of the quality of mesh elements and more efficient for the time sequence data. Then we develop a global intensity-based registration method to solve the matching problem between 3D manifolds with temporal constraints. Our method is based on a 4D(3D+T) free-from B-spline deformation model which has both spatial and temporal smoothness. Compared with previous 4D image registration techniques, our method avoids some local minimum. Thus it can be solved faster and achieve better accuracy of landmark point predication. We demonstrate the efficiency of these works on the real applications. The first one is applied to the dynamic face registering and texture mapping. The second one is applied to lung tumor motion tracking in the medical image analysis. In our future work, we are developing more efficient mesh-based 4D registration method. It can be applied to tumor motion estimation and tracking, which can be used to calculate the read dose delivered to the lung and surrounding tissues. Thus this can support the online treatment of lung cancer radiotherapy.
396

Plasmonic Devices for Manipulating Light at the Nanoscale: Slow-light Waveguides and Compact Couplers

Huang, Yin 19 November 2012 (has links)
In this dissertation, I explore new plasmonic structures and devices for manipulating light at the nanoscale: slow-light waveguides and compact couplers. I first introduce a plasmonic waveguide system, based on a plasmonic analogue of electromagnetically induced transparency (EIT), which supports a subwavelength slow-light mode, and exhibits a small group velocity dispersion. The system consists of a periodic array of two metal-dielectric-metal (MDM) stub resonators side-coupled to a MDM waveguide. Decreasing the frequency spacing between the two resonances increases the slowdown factor and decreases the bandwidth of the slow-light band. I also show that there is a trade-off between the slowdown factor and the propagation length of the slow-light mode. I next consider Mach-Zehnder interferometer (MZI) sensors in which the sensing arm consists of a slow-light waveguide based on a plasmonic analogue of EIT. I show that a MZI sensor using such a waveguide leads to approximately an order of magnitude enhancement in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, compared to a MZI sensor using a conventional MDM waveguide. I also introduce compact wavelength-scale slit-based structures for coupling free space light into MDM subwavelength plasmonic waveguides. I first show that for a single slit structure the coupling efficiency is limited by a trade-off between the light power coupled into the slit, and the transmission of the slit-MDM waveguide junction. I next consider a two-section slit structure, and show that for such a structure the upper slit section enhances the coupling of the incident light into the lower slit section. The optimized two-section slit structure results in ¡­ 2.3 times enhancement of the coupling into the MDM plasmonic waveguide compared to the optimized single-slit structure. I finally consider a symmetric double-slit structure, and show that for such a structure the surface plasmons excited at the metal-air interfaces are partially coupled into the slits. Thus, the coupling of the incident light into the slits is greatly enhanced, and the optimized double-slit structure results in ¡­ 3.3 times coupling enhancement compared to the optimized single-slit structure. In all cases the coupler response is broadband.
397

A Method To Improve Interest Point Detection And Its Gpu Implementation

Karuppannan Gunashekhar, Prabakar 20 November 2012 (has links)
Interest point detection is an important low-level image processing technique with a wide range of applications. The point detectors have to be robust under affine, scale and photometric changes. There are many scale and affine invariant point detectors but they are not robust to high illumination changes. Many affine invariant interest point detectors and region descriptors, work on the points detected using scale invariant operators. Since the performance of those detectors depends on the performance of the scale invariant detectors, it is important that the scale invariant initial stage detectors should have good robustness. It is therefore important to design a detector that is very robust to illumination because illumination changes are the most common. In this research the illumination problem has been taken as the main focus and have developed a scale invariant detector that has good robustness to illumination changes. In the paper [6] it has been proved that by using contrast stretching technique the performance of the Harris operator improved considerably for illumination variations. In this research the same contrast stretching function has been incorporated into two different scale invariant operators to make them illumination invariant. The performances of the algorithms are compared with the Harris-Laplace and Hessian-Laplace algorithms [15].
398

Low Temperature Carbon Material Deposition with Photo-Enhanced Chemical Vapor Deposition

Kang, KyungNam 27 November 2012 (has links)
Photo-enhanced chemical vapor deposition (CVD) technique is investigated here for low temperature deposition of carbon nanotubes (CNTs) and hexagonal diamond. Most current deposition methods require high substrate temperature. Photo-enhanced CVD utilizes light energy to dissociate carbon containing precursor molecules and hence has a potential for low temperature deposition. CCl4, having a high absorption coefficient compared to other commonly employed hydrocarbons in the UV emission spectrum from a Xe arc lamp, is selected as a carbon precursor in this work. Extensive experimentation conducted by varying Al/Ni/Al catalyst layer thicknesses on SiO2 coated Si substrates, substrate annealing temperature in the range 350 - 450 ¡ÆC for 25 min, and chamber pressure in the range 0.22 - 10 Torr in ammonia ambient, yielded suitable catalyst layers of thicknesses 3/2/3, 5/1/5 and 5/3/5 nm and annealing pressure of 10 Torr. For photo-enhanced CVD deposition, experiments are conducted with various Ar/CCl4 flow ratio in 1.5 - 19 range, total chamber pressure in 3 - 10 Torr range, and substrate temperatures in 350 - 450 ¡ÆC range. Optimal condition for CNT deposition in this work is found to be 30 min at 400 ¡ÆC at 5 Torr total pressure with Ar/CCl4 ratio of 9 with 5/1/5 nm thick catalyst annealed at 400 ¡ÆC. Raman spectroscopy indicates MWCNT growth and I-V measurements yield sheet resistivity of 22 k§Ù/sq. The densest hexagonal diamond deposition is obtained at 450 ¡ÆC, 3 hr deposition time, at 10 Torr with Ar/CCl4 ratio of 2.3 with 5/3/5 nm thick catalyst annealed at 450 ¡ÆC. Lesser dense hexagonal diamond platelets are obtained at 450 ¡ÆC, 3 hr deposition time, at 10 Torr with Ar/CCl4 ratio of 2.3 with 3/2/3 nm thick catalyst annealed at 450 ¡ÆC. Based on the physical structures observed at various stages of growth in SEM images, a model is proposed for nucleation and subsequent growth of hexagonal diamond platelets with graphene layer playing role both during nucleation and during platelet growth. Raman spectroscopy and XPS results confirm the deposition material to be hexagonal diamond. The grown material is characterized with UV-Vis spectroscopy for optical and with a nanoindenter for electrical and mechanical properties.
399

An Electronic Architecture for Mediating Digital Information in a Hallway Facade

Aswathanarayana setty, Narendra Nallapeta 29 November 2012 (has links)
Ubiquitous computing requires integration of physical space with digital information. This presents the challenges of integrating electronics, physical space, software and the interaction tools which can effectively communicate with the audience. Many research groups have embraced different techniques depending on location, context, space, and availability of necessary skills to make the world around us as an interface to the digital world. Encouraged by early successes and fostered by project undertaken by tangible visualization group. We introduce an architecture of Blades and Tiles for the development and realization of interactive wall surfaces. It provides an inexpensive, open-ended platform for constructing large-scale tangible and embedded interfaces. In this paper, we propose tiles built using inexpensive pegboards and a gateway for each of these tiles to provide access to digital information. The paper describes the architecture using a corridor fa\c{c}ade application. The corridor fa\c{c}ade uses full-spectrum LEDs, physical labels and stencils, and capacitive touch sensors to provide mediated representation, monitoring and querying of physical and digital content. Example contents include the physical and online status of people and the activity and dynamics of online research content repositories. Several complementary devices such as Microsoft PixelSense and smartdevices can support additional user interaction with the system. This enables interested people in synergistic physical environments to observe, explore, understand, and engage in ongoing activities and relationships. This paper describes the hardware architecture and software libraries employed and how they are used in our research center hallway and academic semester projects.
400

Feedback Control of Sector-Bound Nonlinear Systems with Applications to Aeroengine Control

Alvergue, Luis Donaldo 21 December 2012 (has links)
This dissertation is divided into two parts. In the first part we consider the problem of feedback stabilization of nonlinear systems described by state-space models. This approach is inherited from the methodology of sector bounded or passive nonlinearities, and influenced by the concept of absolute and quadratic stability. It aims not only to regionally stabilize the nonlinear dynamics asymptotically but also to maximize the estimated region of quadratic attraction and to ensure nominal performance at each equilibrium. In close connection to gain scheduling and switching control, a path of equilibria is programmed based on the assumption of centered-epsilon-cover which leads to a sequence of linear controllers that regionally stabilize the desired equilibrium asymptotically. In the second part we tackle the problem of control for fluid flows described by the incompressible Navier-Stokes equation. We are particularly interested in film cooling for gas turbine engines which we model with the jet in cross-flow problem setup. In order to obtain a model amenable to the controller design presented in the first part, the well-known Proper Orthogonal Decomposition (POD)/Galerkin projection is employed to obtain a nonlinear state-space system called the reduced order model (ROM). We are able to stabilize the ROM to an equilibrium point via our design method and we also present direct numerical simulation (DNS) results for the system under state feedback control.

Page generated in 0.1212 seconds