• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of vibration-induced fretting corrosion for electrical connectors

Xie, Fei, January 2007 (has links) (PDF)
Thesis (Ph.D.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (ℓ.128-134 )
2

Etude et modélisation de l'endurance électrique de micro-contacts soumis à des sollicitations de fretting-usure : caractérisation de nouveaux dépôts base Argent

Laporte, Julie 10 November 2016 (has links)
L’instrumentation de plus en plus poussée des systèmes mécaniques (aéronautique, automobile,…) impose une utilisation croissante des connecteurs électriques. Cependant, leur environnement de fonctionnement (sollicitations chimiques et vibratoires) peut entrainer une dégradation plus ou moins sévère des contacts électriques limitant ainsi le passage du courant. Pour limiter cette dégradation et assurer la stabilité des connexions, des revêtements d’or sont couramment appliqués au niveau des contacts. Cependant, la conjecture économique et le coût très élevé de l’or nécessite de trouver une alternative moins chère. Parmi les métaux conducteurs, l’argent est aujourd’hui le meilleur candidat. L’objectif de cette thèse est donc d’étudier la réponse électrique et l’endommagement de dépôts argent soumis à des sollicitations de fretting. Pour cela, ces travaux de recherche ont été abordés selon trois axes. Le premier axe a permis une étude complète d’un contact homogène argent/argent afin d’identifier les mécanismes de dégradation responsables de la rupture électrique aussi bien en fretting qu’en glissement alterné. Il a aussi été possible, par une approche énergétique, de mettre en place un modèle prédictif permettant d’extrapoler les durées de vie du contact selon différents paramètres de chargement. Une étude complémentaire a également montré l’impact d’une atmosphère corrosive à base de soufre sur les contacts électriques en argent. Le second axe a permis, quant à lui, d’étudier le comportement tribologique et électrique de nouveaux matériaux à base d’argent développés dans le but de remplacer les dépôts dorés. L’analyse de ces contacts homogènes a permis de mettre en évidence les mécanismes de dégradation et les comportements mécaniques des contacts soumis à des environnements humides. Dans le dernier axe, une étude a été menée sur ces mêmes matériaux à base d’argent mais en configuration hétérogène contre un dépôt d’or afin d’identifier le comportement tribologique et électrique de ces contacts quand ils sont composés par des matériaux avec des propriétés similaires ou opposées. / Advanced instrumentation in mechanical systems (aeronautical, automobile etc…) goes hand in hand with an ever increased use of electrical connectors. However, the unfavorable operating environment (chemical attack and vibrational loads) causes more or less severe degradation of electrical contacts, which in turn perturbs their electrical conductivity. Gold plating is usually applied in electrical contacts in order to limit damage and to ensure connector stability. However, economic constraints and the high cost of gold require cheaper alternatives. Amongst conductive metals, silver is the best candidate. Hence, the purpose of this PhD project is to investigate the electrical response and the degradation of silver coatings when subjected to fretting loadings. The study is divided into three main research axes. The first axis consists in realizing a complete study of a homogeneous silver/silver contact in order to identify the degradation mechanisms that are responsible for the electrical failure, both in fretting loadings and reciprocating sliding. It was possible to formalize a predictive model, using an energy density approach, allowing to extrapolate the lifetime of the contact as a function of various loading parameters. A complementary study also showed the impact of a corrosive sulfur atmosphere on these electric contacts. As part of the second research axis, an investigation of the tribological and electrical behavior of novel silver-based materials, solely synthesized as a gold replacement, was performed. The analysis of these homogeneous contacts allowed to explain the degradation mechanism and the mechanical behavior of these contacts when subjected to a wet environment. In the last research axis a study was led on the same silver-based materials but in a heterogenous configuration against a gold coating in order to identify the tribological and electrical behavior of these contacts when composed by materials with similar or opposite properties.
3

Effect on Contact Resistance dueto Cross Connection of MC4 Compatible Connector

Tanguturi, Sai Kishan January 2018 (has links)
Electrical connectors are the blocks that connect solar panels together. Whenever a photovoltaic plant commences, the main discussion goes around on solar panels, inverters, charge controllers, etc. But the topic of connectors is usually hardly discussed. Connectors in a photovoltaic system can definitely contribute to improve the overall performance of the system, provided that importance is given while selecting the connectors. The electrical connectors used in photovoltaic systems can be connected in two possible ways. Connectors can be connected either in a pure-connection or in a cross-connection. Male and female connectors from the same brand results a pure-connection (P-C). Male and female connectors from two different brands results in a cross-connection (C-C). There have been discussions in photovoltaic, electrical connector markets and international solar events regarding the risks involved, losses and consequences due to a cross-connection. The main reason behind cross-connections is the unawareness of the installers in knowing the difference between a pure-connection and a cross-connection. Even though the installers are aware of this difference, they are not aware of the consequences of cross-connections. Multi-Contact, a leading electrical connector manufacturer of MC4 photovoltaic connectors affected by the counterfeit products of MC4, due to the sudden boom in the solar market during 2011-12. With the help of TÜV Rheinland, Multi-Contact conducted couple of tests namely temperature increase test and accelerated stress tests to understand the disadvantages of cross-connections. This thesis tried to replicate the tests performed by Multi-Contact in an attempt to understand the test results by using connectors that are used in the Swedish market. Performing temperature increase test and accelerated stress tests on most commonly used connectors in the Swedish market is the main aim of this thesis. The first test, gives an understanding of the temperature variations across various connector sets (four connector sets from various manufacturers used in this thesis) and the latter tests helps to understand the quality of the contact resistance of these connector sets. The four connector set manufacturers used in this test were Multi-Contact (MC), Weidmüller (WM), Blussun solar (BSS) and PBM. The quality of contact resistance of a connector is directly related to the quality of the connector set. During the 20 minutes of the temperature increase test, the connector set from WM performed better than its competitors in the P-C. Whereas, the MC-BSS connector set had performed well in the C-C. The connector type of male MC and female BSS showed its dominance throughout the test. Unfortunately, no conclusions were able to be drawn from this test results due to insufficient information about the test procedure. From the results of accelerated stress tests, the C-C set from MC outperformed its P-C counterpart. All ten connector sets used in this project passed the standard and qualified as connectors with good quality contact resistance. Therefore the best results out of only a P-C connector set does not seems to be completely true. With the standard used in this thesis, it is quite difficult to judge the quality of connectors. Rather than saying a P-C is superior and a C-C is inferior in terms of quality, there is a need to come up with a new method to evaluate the quality of connectors. Matching the connectors based on their tolerances could be a potential solution to the mismatching problem in connectors.

Page generated in 0.062 seconds