Spelling suggestions: "subject:"electrical doping"" "subject:"alectrical doping""
1 |
Design and development of dimeric sandwich compounds as n-dopants for organic electronicsMoudgil, Karttikay 27 May 2016 (has links)
Electrical doping of organic semiconductors with molecular oxidants (p-type) or reductants (n-type) can greatly improve charge injection and conductivity in devices. Simple one electron reductants that are capable of reducing most electron-transport materials will inevitably also be sensitive to reaction with oxygen. Coupling electron transfer step with bond breaking/ making processes in principle can address this problem. The rhodocene dimer and related ruthenium and iridium dimeric sandwich compounds have been discussed as example of such n-dopants, reducing a variety of organic semiconductors to the corresponding radical anions, while forming monomeric cations. This class of n-dopants can be used in both vapor- and solution-processed devices, and the dopant monomer cations are large and, therefore, fairly stable with respect to diffusion. This thesis focused on increasing the utility of these and related electrical dopants. In order to reduce various electron-transport materials with lower electron affinities, which are frequently used in OLEDs, strategies and limitations to develop stronger n-dopants is discussed. Controlling the kinetics of the dopant / semiconductor reactions to allow film processing in ambient conditions, with activation of the dopants being carried out thermally or photochemically in subsequent steps is presented. An approach to covalently tether monomeric cations with themselves, surfaces or electron-transport materials is described. Electrochemical studies that further our understanding of dopant kinetics and thermodynamics is described. The dimer dopant chemistry is also compared to the corresponding hydride-reduced complexes of the cations and manganese tricarbonyl benzene dimer. The directions for future dopant design with improved properties is discussed.
|
2 |
Unraveling the cuprate superconductor phase diagram : Intrinsic tunneling spectroscopy and electrical dopingJacobs, Thorsten January 2016 (has links)
High-temperature superconductors belong to the group of strongly correlated materials. In these compounds, complex repulsive electron interactions and a large number of degrees of freedom lead to a rich variety of states of matter. Exotic phases like the pseudogap, charge-, spin- and pair-density waves, but also the remarkable phenomenon of superconductivity emerge, depending on doping level and temperature. However, up to now it is unclear what exactly causes these states, to what extent they are coexisting or competing, and where their borders in the phase diagram lie. A better understanding could help in finding the mechanism behind high-temperature superconductivity, but would also provide a better insight into the puzzling behavior of strongly correlated materials. This thesis tries to resolve some of these questions with focus on the underdoped pseudogap regime. Mesa structures of bismuth-based cuprate superconductors were studied using intrinsic tunneling, which allows spectroscopic characterizations of electronic density of states inside the material. A micro/nano fabrication method was developed to further reduce mesa areas into the sub square-micrometer range, in order to minimize the effect of crystal defects and measurement artifacts caused by heating induced by the measurement current. The comparison of energy scales in Bi-2201 and Bi-2212 cuprates shows that the pseudogap phenomenon is not connected to superconductivity, but possibly represents a competing spin-singlet order that is universal to all cuprates. The analysis of the upper critical field in Bi-2201 reveals a low anisotropy, which gives evidence of paramagnetically limited superconductivity. Furthermore, a new electrical doping method is demonstrated, which enables the reversible tuning the doping level of Bi-2212 and study a broad doping range upon a single sample. Using this method, two distinct critical points were observed under the superconducting dome in the phase diagram: one at the overdoped side, associated with the onset of the pseudogap and a metal to insulator transition, and one at optimal doping, associated with an enhanced "dressed" electron energy. Finally, a novel angular-dependent magnetotunneling technique is introduced, which allows for the separation of the superconducting and non-superconducting contributions to the pseudogap phenomenon. The method reveals that after an abrupt decay of the energy gap for T→Tc, weak superconducting correlations persist up to several tens of degrees above Tc.
|
3 |
High-frequency phenomena in small Bi2Sr2CaCu2O8+x intrinsic Josephson junctionsMotzkau, Holger January 2015 (has links)
In this thesis, the tunneling between individual atomic layers in structures of Bi2Sr2CaCu2O8+x based high-temperature superconductors are experimentally studied employing the intrinsic Josephson effect. A special attention is paid to the fabrication of small mesa structures using micro and nanofabrication techniques. In the first part of the thesis, the periodic Fraunhofer-like modulation of the critical current of the junctions as a function of in-plane magnetic field is investigated. A transition from a modulation with a half flux quantum to a flux quantum periodicity is demonstrated with increasing field and decreasing junction length. It is interpreted in terms of the transformation of the static fluxon lattice of stacked, strongly coupled intrinsic Josephson junctions and compared with theoretical predictions. A fluxon phase diagram is constructed.Numerical simulations have been carried out to complement the experimental data. In the second part of the thesis, different resonant phenomena are studied in the dynamic flux-flow state at high magnetic fields, including Eck-resonances and Fiske steps. Different resonant modes and their velocities, including superluminal modes, are identified. In the third part, different experiments attempting to detect radiation from small mesa structures using different setups based on hot-electron bolometer mixers and calorimeters are described. No distinct radiation with emission powers higher than about 500pW could be detected. Furthermore, the interaction with external GHz-radiation is studied. Resonances attributed to an induced flux-flow are observed, and the reflectivity of the sample can be tuned by switching mesas between the superconducting and quasiparticle state. In the last part, the resistive switching of mesas at high bias is studied. It is attributed to a persistent electrical doping of the crystal. Superconducting properties such as the critical current and temperature and the tunneling spectra are analyzed at different doping states of the same sample. The dynamics of the doping is studied, and attributed to two mechanisms; a charge-transfer effect and oxygen reordering
|
Page generated in 0.0918 seconds