Spelling suggestions: "subject:"cavity resonance""
1 |
A Theoretical Prediction Method for Trapped Mode Flow-Acoustic Resonances in a Wind Tunnel with a Side CavityFang, Ying, Fang, Ying January 2017 (has links)
Cavity flow-acoustic resonances may occur when a fluid stream flows past a recessed cavity in a wall. These resonances may lead to high unsteady pressure levels. The resonance involves a coupling between the instability wave which propagates downstream on the shear-layer that spans the open face of the cavity, and acoustic waves that propagate back upstream inside and outside the cavity. These waves are coupled by the scattering processes at the ends of the cavity.
Previous theoretical research considered cavities in a wall that bounds an infinite stream. In many of the experiments on cavity resonances, however, the cavity is placed in a side wall of a wind tunnel. When the surrounding wind tunnel walls are not acoustically treated, the resonances can be very strong. My research is a theoretical investigation of the case of a cavity in a side wall of a wind tunnel.
Recently, a mode trapping phenomenon has been proposed as an explanation for the very strong cavity resonances in the wind tunnel case. The mode trapping occurs when the critical frequency of a mode in the tunnel-cavity region is slightly lower than the critical frequency of the corresponding mode in the tunnel region. The region between these two critical frequencies is defined as a frequency window. Experiments show that very high pressure levels are observed in these frequency windows.
The goal of my research is to develop a global theory of cavity resonances in the wind tunnel geometry. The global theory couples solutions for the instability wave and the acoustic waves through scattering analyses at the ends of the cavity. Resonance frequencies, spatial mode shapes and linear growth rates are predicted. The theoretical predictions are consistent with experimental measurements and demonstrate that the mode trapping phenomenon explains the experimentally observed behavior.
|
2 |
The influence of tyre air cavities on vehicle acousticsTorra i Fernàndez, Èric January 2006 (has links)
The tonal character of the low frequency internal noise in cars is often due to energy transmission through the tyre at the first few eigenfrequencies of the air cavity of the tyre. The first acoustic mode in the air cavity of a typical stationary car tyre is approximately 224 Hz. At this frequency the tyre is comparatively stiff resulting in a high transmission of energy from the road wheel contact to the car body itself. In order to investigate possible means of reducing this effect, the acoustic field inside a tyre is modelled. Theoretically it is found that the pressure inside a tyre and the energy transmission through the tyre to the wheel axle and the car body can be reduced by adding a sound absorbing material inside the tyre. This was confirmed by measurements on stationary as well as rotating tyres with and without added sound absorption. For a rotating tyre there is a split of the natural frequency depending on the rotational speed of the tyre. Measurements in a standard passenger car reveal that the noise level inside the car is rather high in a fairly wide frequency range around 224 Hz at normal velocities. This tonal noise can be reduced by adding sound absorption inside a tyre. Models for the prediction and the reduction of the tonal noise are presented. Measured and predicted results are compared and the agreement is found to be good. It is found that the tonal noise can be reduced by up to 9 dB. The effects of the air cavity resonances on the external noise have also been studied. It is estimated that external tyre noise can be reduced 1 dB by adding a sound absorbing material inside tyres. For a car travelling on a road a strong acoustic field is induced between the floor of the car and the road. The impact of this acoustic field can be reduced by mounting a sound absorbing material underneath the car. It is estimated that the A-weighted sound pressure level close to a running car could be reduced by 3 dB by adding this type sound absorption. It is found that aluminium foam could be a suitable sound absorbing material which could be mounted inside tyres and underneath cars. The acoustic and dynamic properties of various types of aluminium foams are discussed. In particular measurement techniques for determining sound absorption at grazing incidence are investigated. / QC 20100923
|
3 |
A Coupled Tire Structure-Acoustic Cavity ModelMolisani, Leonardo Rafael 01 June 2004 (has links)
Recent experimental results have shown that the vibration induced by the tire air cavity resonance is transmitted into the vehicle cabin and may be responsible for significant interior noise. The tire acoustic cavity is excited by the road surface through the contact patch on the rotating tire. The effect of the cavity resonance is that results in significant forces developed at the vehicle's spindle, which in turn drives the vehicle's interior acoustic field. This tire-cavity interaction phenomenon is analytically investigated by modeling the fully coupled tire-cavity systems. The tire is modeled as an annular shell structure in contact with the road surface. The rotating contact patch is used as a forcing function in the coupled tire-cavity governing equation of motion. The contact patch is defined as a prescribed deformation that in turn is expanded in its Fourier components. The response of the tire is then separated into static (i.e. static deformation induced by the contact patch) and dynamic components due to inertial effects. The coupled system of equations is solved analytically in order to obtain the tire acoustic and structural responses. The model provides valuable physical insight into the patch-tire-acoustic interaction phenomenon. The influence of the acoustic cavity resonance on the spindles forces is shown to be very important. Therefore, the tire cavity resonance effect must be reduced in order to control the tire contribution to the vehicle interior. The analysis and modeling of two feasible approaches to control the tire acoustic cavity resonances are proposed and investigated. The first approach is the incorporation of secondary acoustic cavities to detune and damp out the main tire cavity resonance. The second approach is the addition of damping directly into the tire cavity. The techniques presented in this dissertation to suppress the adverse effects of the acoustic cavity in the tire response, i.e. forces at the spindle, show to be very effective and can be easily applied in practice. / Ph. D.
|
4 |
Properties of small Bi2Sr2CaCu2O8 intrinsic Josephson junctions: confinement, flux-flow and resonant phenomenaKatterwe, Sven-Olof January 2011 (has links)
In this thesis, intrinsic Josephson junctions, naturally formed in the strongly anisotropic high-temperature superconductor Bi2Sr2CaCu2O8 (Bi-2212), are studied experimentally. For this purpose, small mesa structures are fabricated on the surface of single crystals using micro- and nano-fabrication tools, focused ion beam is used to reduce the area of the mesa-structures down to ≈ 1 × 1 μm2. The properties of charge transport across copper-oxide layers inside the mesas are studied by intrinsic tunneling spectroscopy. Temperature, bias and magnetic field dependences of current-voltage characteristics are examined. In the main part of the thesis, the behavior of intrinsic Josephson junctions in magnetic fields B parallel to the copper-oxide planes is studied. Parallel magnetic fields penetrate the junctions in the form of Josephson vortices (fluxons). At high magnetic fields, fluxons are arranged in a regular lattice and are accelerated by a sufficient high transport current. As the fluxon lattice is moving through the mesa, it emits electromagnetic waves in the important THz frequency range. Properties of Bi-2212 mesas in this flux-flow regime are studied in this thesis. The following new observations were made during the course of this work: a crossover from thermal activation above Tc to quantum tunneling below Tc is seen in the interlayer transport-mechanism, the Fraunhofer pattern of Ic(B) is observed clearly in Bi-2212, superluminal electromagnetic cavity resonances and phonon-polaritons are observed in Bi-2212. It is argued that the employed technique for miniaturization of mesas and the obtained results can be useful for a better understanding of fundamental properties of high-temperature superconductors and for the realizations of coherent flux-flow oscillators and coherent phonon-polariton generators in the important THz frequency range. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.
|
5 |
High-frequency phenomena in small Bi2Sr2CaCu2O8+x intrinsic Josephson junctionsMotzkau, Holger January 2015 (has links)
In this thesis, the tunneling between individual atomic layers in structures of Bi2Sr2CaCu2O8+x based high-temperature superconductors are experimentally studied employing the intrinsic Josephson effect. A special attention is paid to the fabrication of small mesa structures using micro and nanofabrication techniques. In the first part of the thesis, the periodic Fraunhofer-like modulation of the critical current of the junctions as a function of in-plane magnetic field is investigated. A transition from a modulation with a half flux quantum to a flux quantum periodicity is demonstrated with increasing field and decreasing junction length. It is interpreted in terms of the transformation of the static fluxon lattice of stacked, strongly coupled intrinsic Josephson junctions and compared with theoretical predictions. A fluxon phase diagram is constructed.Numerical simulations have been carried out to complement the experimental data. In the second part of the thesis, different resonant phenomena are studied in the dynamic flux-flow state at high magnetic fields, including Eck-resonances and Fiske steps. Different resonant modes and their velocities, including superluminal modes, are identified. In the third part, different experiments attempting to detect radiation from small mesa structures using different setups based on hot-electron bolometer mixers and calorimeters are described. No distinct radiation with emission powers higher than about 500pW could be detected. Furthermore, the interaction with external GHz-radiation is studied. Resonances attributed to an induced flux-flow are observed, and the reflectivity of the sample can be tuned by switching mesas between the superconducting and quasiparticle state. In the last part, the resistive switching of mesas at high bias is studied. It is attributed to a persistent electrical doping of the crystal. Superconducting properties such as the critical current and temperature and the tunneling spectra are analyzed at different doping states of the same sample. The dynamics of the doping is studied, and attributed to two mechanisms; a charge-transfer effect and oxygen reordering
|
Page generated in 0.0511 seconds