• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Theoretical Prediction Method for Trapped Mode Flow-Acoustic Resonances in a Wind Tunnel with a Side Cavity

Fang, Ying, Fang, Ying January 2017 (has links)
Cavity flow-acoustic resonances may occur when a fluid stream flows past a recessed cavity in a wall. These resonances may lead to high unsteady pressure levels. The resonance involves a coupling between the instability wave which propagates downstream on the shear-layer that spans the open face of the cavity, and acoustic waves that propagate back upstream inside and outside the cavity. These waves are coupled by the scattering processes at the ends of the cavity. Previous theoretical research considered cavities in a wall that bounds an infinite stream. In many of the experiments on cavity resonances, however, the cavity is placed in a side wall of a wind tunnel. When the surrounding wind tunnel walls are not acoustically treated, the resonances can be very strong. My research is a theoretical investigation of the case of a cavity in a side wall of a wind tunnel. Recently, a mode trapping phenomenon has been proposed as an explanation for the very strong cavity resonances in the wind tunnel case. The mode trapping occurs when the critical frequency of a mode in the tunnel-cavity region is slightly lower than the critical frequency of the corresponding mode in the tunnel region. The region between these two critical frequencies is defined as a frequency window. Experiments show that very high pressure levels are observed in these frequency windows. The goal of my research is to develop a global theory of cavity resonances in the wind tunnel geometry. The global theory couples solutions for the instability wave and the acoustic waves through scattering analyses at the ends of the cavity. Resonance frequencies, spatial mode shapes and linear growth rates are predicted. The theoretical predictions are consistent with experimental measurements and demonstrate that the mode trapping phenomenon explains the experimentally observed behavior.
2

Monitoring sand particle concentration in multiphase flow using acoustic emission technology

El-Alej, Mohamed Essid January 2014 (has links)
Multiphase flow is the simultaneous flow of two or several phases through a system such as a pipe. This common phenomenon can be found in the petroleum and chemical engineering industrial fields. Transport of sand particles in multiphase production has attracted considerable attention given sand production is a common problem especially to the oil and gas industry. The sand production causes loss of pipe wall thickness which can lead to expensive failures and loss of production time. Build-up of sand in the system can result in blockage and further hamper production. Monitoring of multiphase flow is a process that has been established over several decades. This thesis reports an assessment of the application of Acoustic Emission (AE) technology as an alternative online technique to monitoring of sand particles under multiphase flow conditions in a horizontal pipe. The research was conducted on a purpose built test rig with the purpose of establishing a relation between AE activity and sand concentration under different multiphase flow conditions. The investigation consisted of five experimental tests. The initial experiment was performed to provide a basis for the application of AE technology to detect sand particle impact prior to performing tests in multiphase flow conditions. Further investigations are reported on two phase air-sand, water-sand and air- water-sand three-phase flows in a horizontal pipe for different superficial gas velocities (VSG), superficial liquid velocities (VSL) and sand concentrations (SC). The experimental findings clearly showed a correlation exists between AE energy levels and multiphase flow parameters, such as superficial liquid velocity (VSL), superficial gas velocity (VSG), sand concentration and sand minimum transport condition (MTC).
3

Flow-induced sound and vibration due to the separated shear layer in backward-facing step and cavity configurations

Velikorodny, Alexey S. 25 November 2009 (has links)
Fully turbulent inflow past symmetrically located side branches mounted in a duct can give rise to pronounced flow oscillations due to coupling between separated shear layers and standing acoustic waves. Experimental investigation of acoustically-coupled flows was conducted using digital particle image velocimetry (DPIV) in conjunction with unsteady pressure measurements. Global instantaneous, phase- and time-averaged flow images, as well as turbulence statistics, were evaluated to provide insight into the flow physics during flow tone generation. Onset of the locked-on resonant states was characterized in terms of the acoustic pressure amplitude, frequency and the quality factor of the resonant pressure peak. Structure of the acoustic noise source is characterized in terms of patterns of generated acoustic power. In contrast to earlier work, the present study represents the first application of vortex sound theory in conjunction with global quantitative flow imaging and numerical simulation of the 2D acoustic field. In addition to the basic side branch configuration, the effects of bluff rectangular splitter plates located along the centerline of the main duct was investigated. The first mode of the shear layer oscillation was inhibited by the presence of plates, which resulted in substantial reduction of the amplitude of acoustic pulsations and the strength of the acoustic source. These results can lead to the development of improved control strategies for coaxial side branch resonators. Motivation for the second part of this study stems from the paper manufacturing industry, where air clamp devices utilize high-speed jets to position paper sheets with respect to other equipment. Thus, vibration of the paper sheet and turbulent flow that emerged from a planar curved nozzle between a flexible wall and a solid surface containing a backward-facing step (BFS) were investigated using high-speed photography and DPIV, respectively. The emphasis was on the characterization of the flow physics in the air clamp device, as well as of the shape of the paper sheet. For the control case, that involved a solid wall with a geometry that represented the time-averaged paper profile, hydrodynamic oscillation frequencies were characterized using unsteady pressure measurements. Experimentally obtained frequencies of the paper sheet vibration were compared to the hydrodynamic frequencies corresponding to the oscillations of the shear layer downstream of the BFS.
4

Optimization of identification of particle impacts using acoustic emission

Hedayetullah, Amin Mohammad January 2018 (has links)
Air borne or liquid-laden solid particle transport is a common phenomenon in various industrial applications. Solid particles, transported at severe operating conditions such as high flow velocity, can cause concerns for structural integrity through wear originated from particle impacts with structure. To apply Acoustic Emission (AE) in particle impact monitoring, previous researchers focused primarily on dry particle impacts on dry target plate and/or wet particle impacts on wet or dry target plate. For dry particle impacts on dry target plate, AE events energy, calculated from the recorded free falling or air borne particle impact AE signals, were correlated with particle size, concentration, height, target material and thickness. For a given system, once calibrated for a specific particle type and operating condition, this technique might be sufficient to serve the purpose. However, if more than one particle type present in the system, particularly with similar size, density and impact velocity, calculated AE event energy is not unique for a specific particle type. For wet particle impacts on dry or wet target plate (either submerged or in a flow loop), AE event energy was related to the particle size, concentration, target material, impact velocity and angle between the nozzle and the target plate. In these studies, the experimental arrangements and the operating conditions considered either did not allow any bubble formation in the system or even if there is any at least an order of magnitude lower in amplitude than the sand particle impact and so easily identifiable. In reality, bubble formation can be comparable with particle impacts in terms of AE amplitude in process industries, for example, sand production during oil and gas transportation from reservoir. Current practice is to calibrate an installed AE monitoring system against a range of sand free flow conditions. In real time monitoring, for a specific calibrated flow, the flow generated AE amplitude/energy is deducted from the recorded AE amplitude/energy and the difference is attributed to the sand particle impacts. However, if the flow condition changes, which often does in the process industry, the calibration is not valid anymore and AE events from bubble can be misinterpreted as sand particle impacts and vice versa. In this research, sand particles and glass beads with similar size, density and impact velocity have been studied dropping from 200 mm on a small cylindrical stepped mild steel coupon as a target plate. For signal recording purposes, two identical broadband AE sensors are installed, one at the centre and one 30 mm off centred, on the opposite of the impacting surface. Signal analysis have been carried out by evaluating 7 standard AE parameters (amplitude, energy, rise time, duration, power spectral density(PSD), peak frequency at PSD and spectral centroid) in the time and frequency domain and time-frequency domain analysis have been performed applying Gabor Wavelet Transform. The signal interpretation becomes difficult due to reflections, dispersions and mode conversions caused by close proximity of the boundaries. So, a new signal analysis parameter - frequency band energy ratio - has been proposed. This technique is able to distinguish between population of two very similar groups (in terms of size and mass and energy) of sand particles and glass beads, impacting on mild steel based on the coefficient of variation (Cv) of the frequency band AE energy ratios. To facilitate individual particle impact identification, further analysis has been performed using Support Vector Machine (SVM) based classification algorithm using 7 standard AE parameters, evaluated in both the time and frequency domain. Available data set has been segmented into two parts of training set (80%) and test set (20%). The developed model has been applied on the test data for model performance evaluation purpose. The overall success rate of individually identifying each category (PLB, Glass bead and Sand particle impacts) at S1 has been found as 86% and at S2 as 92%. To study wet particle impacts on wet target surface, in presence of bubbles, the target plate has been sealed to a cylindrical perspex tube. Single and multiple sand particles have been introduced in the system using a constant speed blower to impact the target surface under water loading. Two sensor locations, used in the previous sets of experiments, have been monitored. From frequency domain analysis it has been observed that characteristic frequency for particle impacts are centred at 300-350 kHz and for bubble formations are centred at 135 – 150 kHz. Based upon this, two frequency bands 100 – 200 kHz (E1) and 300 – 400 kHz (E3) and the frequency band energy ratio (E3E1,) have been identified as optimal for identification particle impacts for the given system. E3E1, > 1 has been associated with particle impacts and E3E1, < 1 has been associated with bubble formations. Applying these frequency band energy ratios and setting an amplitude threshold, an automatic event identification technique has been developed for identification of sand particle impacts in presence of bubbles. The method developed can be used to optimize the identification of sand particle impacts. The optimal setting of an amplitude threshold is sensitive to number of particles and noise levels. A high threshold of say 10% will clearly identify sand particle impacts but for multiparticle tests is likely to not detect about 20% of lower (impact) energy particles. A threshold lower than 3% is likely to result in detection of AE events with poor frequency content and wrong classification of the weakest events. Optimal setting of the parameters used in the framework such as thresholds, frequency bands and ratios of AE energy is likely to make identification of sand particle impacts in the laboratory environment within 10% possible. For this technique, once the optimal frequency bands and ratios have been identified, then an added advantage is that calibration of the signal levels is not required.
5

Experimental Investigation of the Acoustic Properties of Perforate using Acoustic Three-Ports

Shah, Shail A. January 2022 (has links)
This thesis discusses the aero-acoustic characterisation of a perforate sample using a three-port technique. A rectangular T-junction with a flush mounted perforated sample at the intersection form the acoustical three-port. Under acoustic excitation from three different directions a direct method of impedance determination is incorporated to experimentally determine the passive acoustic properties of the perforate. The three-port scattering matrix and the normalised transfer impedance are calculated in the presence of grazing flow and for high-level excitation and the behaviour of these characteristics is studied. Validation of the determined results in the linear range is carried out by comparing it with existing models. Moreover, based on the experimental results for low grazing flow velocities the dependence of the real part of the transfer impedance on the grazing flow parameters as well as dimensionless numbers is described, and a semi-empirical model quantifying the behaviour is proposed. Furthermore, the thesis explains some experimental errors pertaining to standing wave patterns and operating conditions, and corrections are suggested to reduce the errors. / <p>QC 221007</p>

Page generated in 0.0557 seconds