• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 58
  • 21
  • 11
  • 7
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 213
  • 213
  • 39
  • 35
  • 32
  • 30
  • 23
  • 22
  • 21
  • 20
  • 20
  • 18
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Time dependent studies of foam stability using image analysis, electrical resistivity and ultrasound

Daugelaite, Daiva 14 December 2011 (has links)
The production of highly aerated foods remains a challenge that requires skill to obtain desired appearance and texture. Since foams are fragile and inherently unstable, evaluation of structure changes with time requires a delicate approach. Non-invasive but informative evaluation of changes in aerated food properties is a desired goal to be achieved in this thesis. I studied the aging of egg white foams of different void fraction using two noninvasive techniques - ultrasonic spectroscopy and electrical resistivity - with a view to understanding aging mechanisms that would affect the quality of the final product. To help in interpretation of the results, a commercial high void fraction foam, Gillette (Sensitive), was also analyzed. As a support technique for ultrasound results I used image analysis in order quantitatively evaluate the size of bubbles in the foams. Large increases in attenuation were observed with increasing aging time and frequency. Results were modeled using an effective medium theory originated by Foldy (1945) in order to understand the factors governing foam lifetime and texture. From electrical resistance measurements, liquid fraction changes in an egg white foam column were evaluated quantitatively and qualitatively by using a generalized free drainage model. Although egg-white foams were more prone to changes due to drainage, I observed that for all foams the ultrasonic scaling parameter alfa*lambda/freq was proportional to the square of average bubble size (indicative of a diffusively driven aging process due to disproportionation of bubbles). Slopes of alfa*lambda/freq versus aging time were 6*10-8 and 11*10-8 for egg white foams of void fraction 0.65 and 0.78, respectively, indicating that disproportionation progressed approximately twice as fast in the high void fraction foam. The slopes of alfa*lambda/freq versus aging time were similar for both Gillette foam void fractions (0.93 and 0.91) at a value of 1.5*10–8 s-1, attributable to a lower solubility of isobutane compared to air. By combining ultrasound and electrical resistivity, this thesis has provided novel insights into understanding instability processes occurring in foams. Potentially, ultrasound techniques could be used instead of imaging for foam aging studies, since non-invasive and non-destructive measurements of attenuation and phase velocity permit interrogation of opaque foam structures.
12

Seasonal Cycling in Electrical Resistivities at Ten Thin Permafrost Sites, Southern Yukon and Northern British Columbia

Miceli, Christina January 2012 (has links)
Permanent electrode arrays were set up at ten monitoring sites from Whitehorse, Yukon, to Fort St. John, British Columbia, in order to gain a clearer perspective of the effectiveness of electrical resistivity tomography (ERT) monitoring over an annual cycle of freezing and thawing. This research forms part of a longer-term project that is attempting to use ERT to examine changes in permafrost resulting from climate change. Inter-site and intra-site variability were examined by installing and maintaining data-loggers to monitor active layer and shallow permafrost temperatures, air temperatures, and snow depths at each site from August 2010 – August 2011. Additional site information was collected on each ERT survey date, including frost table depths, snow depths, and vegetation heights. Based on nearby community records, the climate in the region has been warming by a rate of 0.3 to 0.5 °C per decade since 1970. The permafrost at all ten sites was characteristic of sporadic discontinuous and isolated patches permafrost zones, and is classified as Ecosystem-protected. Nine of the ten permafrost sites had permafrost that was thinner than the 14 or 7 m penetration depth of the ERT survey (three-layer system consisting of an active layer, permafrost, and sub-permafrost perennially unfrozen zone). The most predictable results were achieved at the two-layer system site (active layer overlying permafrost to the base of the profile) in each of its virtual resistivity boreholes, relative resistivity change comparisons, and mean near-surface apparent resistivity progressions. ERT is an effective method of delineating permafrost boundaries in thin permafrost environments and does show strength when monitoring areas of seasonally frozen ground. Repeat surveys at a site indicate seasonal changes in three-layer conditions, but not as predictably as those in a two-layer system. In order to receive the most accurate information regarding permafrost extent and thickness, it appears ideal to conduct ERT surveys annually, within the same month as the previous year’s survey.
13

Caracterização de coquinas e dolomitos integrando três metodologias distintas : resistividade elétrica, ressonância magnética nuclear (rmn) e porosimetria por intrusão de mercúrio (micp) / Characterization of coquinas and dolomites using three different techniques : electrical resistivity, nuclear magnetic resonance (nmr) and porosimetry by mercury intrusion (micp)

Fiorelli, Gabriel Leal, 1987- 28 August 2018 (has links)
Orientador: Osvair Vidal Trevisan / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-28T00:52:53Z (GMT). No. of bitstreams: 1 Fiorelli_GabrielLeal_M.pdf: 3837582 bytes, checksum: 65b0461498266c19956369250cbca96f (MD5) Previous issue date: 2015 / Resumo: O presente trabalho tem por objetivo caracterizar rochas carbonáticas de afloramento, com propriedades petrofísicas análogas às do pré-sal brasileiro, integrando três ferramentas distintas: Resistividade Elétrica, Ressonância Magnética Nuclear (RMN) e Porosimetria por Intrusão de Mercúrio (MICP) em condições ambientes. As rochas são coquinas Coqueiro Seco da Formação Morro do Chaves, Bacia Sergipe ¿ Alagoas, Brasil, e dolomitos Silurian da Formação Thornton, provenientes dos Estados Unidos. As amostras de rochas foram analisadas variando-se a suas saturações de salmoura/ar/óleo e medindo-se a resistividade elétrica e o tempo de relaxação magnética transversal (T2) em cada nível de saturação. As amostras foram também analisadas quanto à distribuição de gargantas utilizando a técnica de Porosimetria por Intrusão de Mercúrio (MICP). Os resultados de tempo de relaxação obtidos mostram que as estruturas porosas dos dois sistemas rochosos têm características de distribuição de tamanho de poros multimodal. No entanto, as curvas de MICP apresentaram comportamentos distintos. As coquinas e os dolomitos apresentaram ser compostos na maioria por estruturas macroporosas, com uma pequena parcela mesoporosa e microporosa. As curvas de índice de resistividade para o sistema de saturação água ¿ ar apresentaram comportamento linear para as duas rochas. Em contrapartida no sistema de saturação água ¿ óleo, não foi possível visualizar um comportamento linear. Para os dolomitos as curvas apresentaram um desvio positivo em baixas saturações, justificado pela metodologia empregada. / Abstract: This study aims to characterize carbonate rocks outcrop rocks with similar petrophysical properties of the Brazilian pre-salt by three different methodologies: Electrical Resistivity, Nuclear Magnetic Resonance (NMR) and Porosimetry by Mercury Intrusion (MICP) at room conditions. The rocks are coquinas Coqueiro Seco Formation Morro do Chaves, Sergipe Basin - Alagoas, Brazil, and Silurian dolomites Formation Thornton, from the United States. The rock samples were analyzed for varying brine saturations / air / oil by measuring electrical resistivity and magnetic transverse relaxation time (T2) at each level of saturation. The samples were also analyzed for throat size distribution using the technique of porosimetry by mercury intrusion (MICP). The relaxation time results show that the porous structures of the two systems have pore size characteristics of multimodal distribution. However the MICP curves showed different behavior. The present coquinas and dolomites are composed mostly of macroporous structures with a small portion of micropores and mesopores. The resistivity index curves for water/air saturations ¿ are typical, with a linear behavior. However, for water/oil saturations, the linear behavior. For dolomites, the curves showed a positive difference, justified by the methodology used / Mestrado / Reservatórios e Gestão / Mestre em Ciências e Engenharia de Petróleo
14

Geophysical Mapping of Concealed Karst and Conduits north of Bellevue, OH

Estifanos, Biniam H. 22 July 2014 (has links)
No description available.
15

Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia

Roningen, Jeanne Marie 09 May 2011 (has links)
Mountain Lake in Giles County, Virginia, has a documented history of severe natural lake-level changes involving groundwater seepage [Jansons, 2004] that extend over the past 4200 years [Cawley, 1999], and as of December 2010 the lake was about 2% full by volume. Situated in the Valley and Ridge physiographic province on the axis of a plunging anticline and straddling contacts between three upper Ordovician and lower Silurian formations, the lake is one of two natural lakes in Virginia. A daily water balance, geophysical surveying with dipole-dipole electrical resistivity, and chemical sampling have shed light on the nature of flow to and from the lake, including: 1) the steady nature of net groundwater outflow, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, 3) the influence of a fault not previously discussed in literature regarding the lake, and 4) the possibility of flow pathways through karst features. Results from a water balance indicate steady lake drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity profiles display a highly heterogeneous subsurface and reveal low-resistivity areas that suggest flow pathways to and from the lake. Well logs, satellite images, and outcrop observations appear to confirm the presence of a fault to the east of the lake. Chemical evidence suggests that karst features may be present in the upper Reedsville-Trenton formation underlying the lakebed. / Master of Science
16

A STUDY OF THE ELIMINATION OF THE INFINITE POLE IN THE POLE-DIPOLE ELECTRICAL RESISTIVITY ARRAY

2015 December 1900 (has links)
The pole-dipole (PD) electrical resistivity array is used as part of a geophysical technique, which can be used in exploration for mineral, geothermal and hydrological resources. Furthermore, it can be used in archaeological investigations. The PD array is useful in obtaining large depths of investigation, but the array requires one pole to be planted at a greater distance from the other electrodes. Placing the infinite pole is time consuming and costly, especially in rough terrains. It can also be a liability in populated areas. Previous data inversion software assumes the infinite pole to be planted at infinity. Therefore, the field data collected has to mimic the assumptions of the inversion software. Some recent inversion programs use all 4-electrode positions for data inversion. In this case, is a good approximation of infinity for the infinite pole still necessary? Is the depth of investigation still the same or relevant with a non-infinite, infinite pole? Is the resolution of the cross-sections retained? To answer the above questions a Generalized Electrode Array (GEA) 1 dimensional (1D) inversion program is used. Different sets of field data were collected with non-infinite pole (NIP) PD arrays; these arrays are set up as PD arrays with an infinite pole planted relatively close to or on the survey lines itself. A COMSOL finite element model were modelled with varying infinite pole distances to identify the distance required for the retention of the depth of investigation and resolution of the PD array. Modelling from GEA shows the NIP distances do not affect the 1D inversion accuracy of the resistivity nor the layer thickness. The field data indicates that it is necessary to have an infinite pole, but the distance to the infinite pole can be substantially less than 10 times the array length, which is the usual rule of thumb for infinite pole placement. With 3 dimensional (3D) COMSOL modelling results, it indicates a minimum pole distance to be 2.5-array length to retain the depth of investigation and precision of the inverted sections of the PD array.
17

The influence of multi-walled carbon nanotubes on the properties of polypropylene nanocomposite : the enhancement of dispersion and alignment of multiwalled carbon nanotube in polypropylene nanocomposite and its effect on the mechanical, thermal, rheological and electrical properties

Ezat, Gulstan S. January 2012 (has links)
Carbon nanotubes are known as ideal fillers for polymer systems; the main advantage of carbon nanotubes over other nano-reinforcing particles is the combination of superior strength and stiffness with large aspect ratio. Carbon nanotubes may improve the mechanical, electrical and thermal properties of polymers, but to realise their potential in polymer systems uniform dispersion, strong interfacial adhesion and alignment of nanotubes within the polymer matrix are necessary. These properties are not easy to achieve and they are key challenges in producing CNT/Polymer system. This research was carried out in an attempt to understand how the properties of CNT/Polymer composite can be optimised by manipulation of additives, compounding and postcompounding conditions. Polypropylene/Multi-Walled Carbon Nanotube (PP/MCNT) composites were prepared by conventional twin screw extrusion. Dispersants and compatibilisers were used to establish good interaction between filler and polymer. Several different extruder screw configurations were designed and the properties of PP/MCNT composite prepared by each configuration investigated. The results indicated that the addition of carbon nanotubes without additives enhanced mechanical, electrical and thermal properties of polypropylene polymer. Incorporation of compatibilisers into PP/MCNT improved the stiffness but decreased the strength of the nanocomposite, whilst addition of dispersants decreased the mechanical properties of the nanocomposite. Addition of both additives at high concentration improved electrical conductivity and induced electrical percolation in the nanocomposite. Extruder screw configuration was found to have significant effect on the electrical conductivity whilst only slightly affecting mechanical properties of the nanocomposite, possibly due to the competition between dispersion and degradation of polymer chains and possible reduction of carbon nanotube length by intensive shear during compounding. The use of screw configuration with high mixing intensity promoted the dispersion of nanotubes and favoured the conduction process in the nanocomposite. Finally in an attempt to improve dispersion and alignment of carbon nanotubes, compounded PP/MCNT composite was subjected to micromoulding, fibre spinning and biaxial stretching processes and the resultant properties investigated. Application of post-compounding process was found to have significant effect on mechanical and rheological properties of the nanocomposite. Stiffness and strength of the nanocomposites treated by post-compounding processes were found to increase by up to 160% and 300%, respectively. The reinforcement effect of carbon nanotubes in the stretched nanocomposites was found to be the greatest. Rheological analysis suggested that the application of post-compounding processes enhanced dispersion of carbon nanotubes within the nanocomposite. Overall, this finding of this research has shown that carbon nanotubes can be incorporated into polypropylene using conventional equipment to provide significant improvement in properties. By careful choices of additives, compounding and postcompounding conditions, specific properties can be further enhanced.
18

A comparison of hyporheic transport at a constructed stream restoration structure and natural riffle feature, West Branch Owego Creek, New York, USA

Smidt, Samuel J. 01 May 2014 (has links)
While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce hyporheic exchange comparable to natural stream features. This study compares a stream restoration structure (cross-vane) to a natural feature (riffle) concurrently in the same stream reach using time-lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, I am able to quantify hyporheic extent and transport beneath the cross-vane structure and riffle. I interpret from the geophysical data that the cross-vane and natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross-vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67-hr injection was detected along flowpaths for 4.6-hrs at the cross-vane and 4.2-hrs at the riffle. The spatial extent of the hyporheic zone at the cross-vane was 12% larger than at the riffle. I compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross-vane and riffle and significant differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and residence times to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize those benefits.
19

Investigation of Concrete Electrical Resistivity As a Performance Based Test

Malakooti, Amir 01 December 2017 (has links)
The purpose of this research project was to identify the extent that concrete resistivity measurements (bulk and/or surface) can be used as a performance based lab test to improve the quality of concrete in Utah bridge decks. By allowing UDOT to specify a required resistivity, concrete bridge deck quality will increase and future maintenance costs will decrease. This research consisted of two phases: the field phase and the lab phase. In the field phase, concrete samples were gathered from local concrete producers in Utah. These concrete samples were made with common concrete mixes used in bridge decks across the state of Utah. Testing multiple mix designs allowed the research team to investigate several variations of concrete constituents, for instance, water to cement ratio, common Utah supplementary cementitious materials, curing type, and aggregate type. Mechanical and durability testing was performed on concrete of different ages. These tests included strength, surface resistivity, bulk resistivity, rapid chloride permeability, and freeze and thaw tests. In the lab phase, one of the field mixes was selected as the control mix. This mix was then duplicated in the lab in order to see the performance differences of each mix in the controlled and field experiments. In addition, changes were made to the lab control mix, to see the effect of different materials on the resistivity and durability of concrete.
20

Thermal Conductivity of Nanocrystalline Nickel

Wang, Shize 04 January 2012 (has links)
The grain-size dependences of thermal conductivity and electrical resistivity of polycrystalline and nanocrystalline nickel were measured by the flash method and four-point probe method, respectively. Nanocrystalline nickel was made by the pulsed-current electrodeposition process, while polycrystalline nickel was commercially available Ni 200 in annealed condition. The grain sizes of the materials examined ranged from 28 nanometers to 57 micrometers. Noticeable changes in thermal conductivity and electrical resistivity with grain size were observed in particular for samples with grain sizes less than 100 nm. These results can be explained on the basis of the rapid increase in the intercrystalline grain boundary and triple junction volume fractions at very small grain sizes. The relationship between thermal conductivity and electrical resistivity of nanocrystalline nickel follows the classic Wiedemann-Franz law.

Page generated in 0.4537 seconds