• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 58
  • 21
  • 11
  • 7
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 215
  • 215
  • 40
  • 36
  • 32
  • 30
  • 23
  • 23
  • 21
  • 20
  • 20
  • 18
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

New Developments in Nitridometalates and Cyanamides: Chemical, Structural and Physical Properties / Neue Entwicklungen in Nitridometallaten und Cyanamiden: chemische, strukturelle und physikalische Eigenschaften

Bendyna, Joanna 30 November 2009 (has links) (PDF)
In the course of these investigations altogether 18 different compounds have been synthesized and their chemical, structural and physical properties were characterized (XRD, XANES, IR, Raman spectrum, magnetic susceptibility, electrical resistivity, low temperature and TG/DTA). Up to now only nitridonickelates and nitridocuprates were known to exhibit exclusively low oxidation states of the transition metals between 0 and +2. In this work it has been presented that also nitridocobaltates belong to this group. We have proved that “Ca3CoIIIN3” do not exist and the real chemical formula can be regarded as Ca5[CoIN2]2. In the thesis another seven new nitridocobaltates(I) have been described, these add to four already known structures. Among novel phases only Ba9Ca[Co2N3]3 may indicate higher valency state for cobalt with the [Co2N3]5- complexes. The XANES data supporting CoII state by comparison with other compounds possess this oxidation state. The crystal structure of Ba9Ca[Co2N3]3 is related to the perovskite type structure. The remarkable structural features of Sr2[CoN2]0.72[CN2]0.28 ≈ Sr6[CoN2]2[CN2] nitridocobaltates [CoIN2]5- ions partially substituted by carbodiimides [N=C=N]2- ions. Up to now in the crystal structure no indications for a homogeneity range could be observed. Both crystal structures of (Sr6N)[CoN2][CN2]2 and Sr6[CoN2]2[CN2] encompass nitridocobaltate [CoN2]5- and carbodiimide [N=C=N]2- ions. In the structures distorted rocksalt motif based on Sr-N partial structure can be distinguished. Up to now in the system AE-Fe-N-(C) only four crystal structures were reported and in the thesis three new were refined Sr8[FeIIIN3]2[FeIIN2], Sr3[FeN3] and (Sr6N)[FeN2][CN2]2 and their physical properties were characterized. The system AE-Mn-N-(C) via this work was extended by Sr8[MnN3]3 and Sr4[MnN3][CN2]. Up to date the only nitridometalate containing different transition elements is Ba[Ni1-xCuxN]. In this work one more mixed nitridometalate has been described Sr8[MnIIIN3]2[FeIIN2]. The crystal structure of Sr4[MnN3][CN2] revealed some weak diffuse scattering lines. The general formula of Sr4[MnN3][CN2] can be written as Sr4[Mn0.96N2.90][C0.96N2] to emphasize possible homogeneity range. Any explanation of the phenomena and establishment of possible homogeneity range are still a challenge. The structures of Sr8[MIIIN3]2[FeIIN2] (M = Mn, Fe) are related to Sr8[MnIVN3]2[MnIIIN3]. All these compounds are first mixed-valency compounds for respective systems and exhibit close relation to crystal structures of Sr3[MN3] (M = Mn, Fe). From the XANES data alike behaviour of all structures containing Mn was observed. Due to some possible degree of Mn/Fe mixing in the crystal structure of Sr8[MIIIN3]2[FeIIN2] the chemical formula might be written as Sr8[MnN3]2-x[FeN3]x[FeN2]. This needs to be investigate in details. Up to now in the literature the only crystallographic data of nitridometalates contain [NCN]2- ions include two compounds. In this work four novel nitridometalate carbodiimides and cyanamides Sr4[MnN3][CN2], (Sr6N)[MN2][CN2]2 (M = Co, Fe) and Sr6[CoN2]2[CN2] have been synthesized. Predominant magnetic properties in the investigated nitridometalates are connected to some antiferromagnetic M-M interactions supported by AFM ordering. The electrical resistivity often shows at some semi-conducting character of these compounds. XANES spectroscopy provided many useful data about valency states of the transition elements, coordination environment around absorbing atoms and electronic structure. The influence of different parameters on the transition metals K-edges was studied in details. IR and Raman give general data about [NCN]2- ions.
142

Pore-scale numerical modeling of petrophysical properties with applications to hydrocarbon-bearing organic shale

Shabro, Vahid 21 January 2014 (has links)
The main objective of this dissertation is to quantify petrophysical properties of conventional and unconventional reservoirs using a mechanistic approach. Unconventional transport mechanisms are described from the pore to the reservoir scale to examine their effects on macroscopic petrophysical properties in hydrocarbon-bearing organic shale. Petrophysical properties at the pore level are quantified with a new finite-difference method. A geometrical approximation is invoked to describe the interstitial space of grid-based images of porous media. Subsequently, a generalized Laplace equation is derived and solved numerically to calculate fluid pressure and velocity distributions in the interstitial space. The resulting macroscopic permeability values are within 6% of results obtained with the Lattice-Boltzmann method after performing grid refinements. The finite-difference method is on average six times faster than the Lattice-Boltzmann method. In the next step, slip flow and Knudsen diffusion are added to the pore-scale method to take into account unconventional flow mechanisms in hydrocarbon-bearing shale. The effect of these mechanisms is appraised with a pore-scale image of Eagle Ford shale as well as with several grain packs. It is shown that neglecting slip flow in samples with pore-throat sizes in the nanometer range could result in errors as high as 2000% when estimating permeability in unconventional reservoirs. A new fluid percolation model is proposed for hydrocarbon-bearing shale. Electrical conductivity is quantified in the presence of kerogen, clay, hydrocarbon, water, and the Stern-diffuse layer in grain packs as well as in the Eagle Ford shale pore-scale image. The pore-scale model enables a critical study of the [delta]LogR evaluation method commonly used with gas-bearing shale to assess kerogen concentration. A parallel conductor model is introduced based on Archie's equation for water conductivity in pores and a parallel conductive path for the Stern-diffuse layer. Additionally, a non-destructive core analysis method is proposed for estimating input parameters of the parallel conductor model in shale formations. A modified reservoir model of single-phase, compressible fluid is also developed to take into account the following unconventional transport mechanisms: (a) slip flow and Knudsen diffusion enhancement in apparent permeability, (b) Langmuir desorption as a source of gas generation at kerogen surfaces, and (c) the diffusion mechanism in kerogen as a gas supply to adsorbed layers. The model includes an iterative verification method of surface mass balance to ensure real-time desorption-adsorption equilibrium with gas production. Gas desorption from kerogen surfaces and gas diffusion in kerogen are the main mechanisms responsible for higher-than-expected production velocities commonly observed in shale-gas reservoirs. Slip flow and Knudsen diffusion marginally enhance production rates by increasing permeability during production. / text
143

Zerstörungsfreie Wurzelortung mit geophysikalischen Methoden im urbanen Raum / Non-destructive detection of tree roots with geophysical methods in urban areas

Vianden, Mitja Johannes 25 July 2013 (has links)
No description available.
144

NEPTUNE-CANADA BASED GEOPHYSICAL IMAGING OF GAS HYDRATE IN THE BULLSEYE VENT

Willoughby, E.C., Mir, R, Scholl, Carsten, Edwards, R.N. 07 1900 (has links)
Using the NEPTUNE-Canada cable-linked ocean-floor observatory we plan continuous, real-time monitoring of the gas hydrate-associated, “Bullseye” cold vent offshore Vancouver Island. Our group inferred the presence of a massive gas hydrate deposit there, based on the significant resistivity anomaly in our controlled-source electromagnetic (CSEM) dataset, as well as anomalously heightened shear moduli, from seafloor compliance data. This interpretation was confirmed by drilling by IODP expedition 311 (site U1328), which indicated a 40 m thick gas hydrate layer near the surface. Sporadic venting and variations in blanking in yearly single-channel seismic surveys suggest the system is evolving in time. We are preparing two stationary semi-permanent imaging experiments: a CSEM and a seafloor compliance installation. These are designed not only to assess the extent of the gas hydrate deposit, but also for long-term monitoring of the gas hydrate/free gas system. The principle of the CSEM experiment is to input a particular electromagnetic signal at a transmitter (TX) dipole on the seafloor, and to record the phase and amplitude of the response at several seafloor receiver (RX) dipoles, at various TX-RX separations. The data are sensitive to the underlying resistivity, which is increased when conductive pore water is displaced by electrically-insulating gas hydrate. The experiment is controlled onshore, and can be expanded to include a downhole TX. Repeated soundings at this site, over several years, will allow measurement of minute changes in resistivity as a function of depth, and by inference, changes in gas hydrate or underlying free gas distribution. Similarly, the displacement of pore fluids by solid gas hydrate will affect elastic parameters. Thus, seafloor compliance data, the transfer function between pressure and seafloor displacement time series, most sensitive to shear modulus as a function of depth, will be gathered continuously to monitor the evolution of the gas hydrate distribution.
145

PRESSURE CORE ANALYSIS: THE KEYSTONE OF A GAS HYDRATE INVESTIGATION

Schultheiss, Peter, Holland, Melanie, Roberts, John, Humphrey, Gary 07 1900 (has links)
Gas hydrate investigations are converging on a suite of common techniques for hydrate observation and quantification. Samples retrieved and analyzed at full in situ pressures are the ”gold standard” with which the physical and chemical analysis of conventional cores, as well as the interpretation of geophysical data, are calibrated and groundtruthed. Methane mass balance calculations from depressurization of pressure cores provide the benchmark for gas hydrate concentration assessment. Nondestructive measurements of pressure cores have removed errors in the estimation of pore volume, making this methane mass balance technique accurate and robust. Data from methane mass balance used to confirm chlorinity baselines makes porewater freshening analysis more accurate. High-resolution nondestructive analysis of gas-hydratebearing cores at in situ pressures and temperatures also provides detailed information on the in situ nature and morphology of gas hydrate in sediments, allowing better interpretation of conventional core thermal images as well as downhole electrical resistivity logs. The detailed profiles of density and Vp, together with spot measurements of Vs, electrical resistivity, and hardness, provide background data essential for modeling the behavior of the formation on a larger scale. X-ray images show the detailed hydrate morphology, which provides clues to the mechanism of deposit formation and data for modeling the kinetics of deposit dissociation. Gashydrate- bearing pressure cores subjected to X-ray tomographic reconstruction provide evidence that gas hydrate morphology in many natural sedimentary environments is particularly complex and impossible to replicate in the laboratory. Even when only a small percentage of the sediment column is sampled with pressure cores, these detailed measurements greatly enhance the understanding and interpretation of the more continuous data sets collected by conventional coring and downhole logging. Pressure core analysis has become the keystone that links these data sets together and is an essential component of modern gas hydrate investigations.
146

Argamassas autoadensáveis utilizando cinzas de casca de arroz como finos : comparação com o caso de argamassas vibradas /

Mello, Anna Beatriz Alves de January 2016 (has links)
Orientador: Maria da Consolação Fonseca de Albuquerque / Resumo: O trabalho apresenta um estudo exploratório sobre o uso de cinzas de casca de arroz como finos em argamassas autoadensáveis. Para tanto foram realizadas composições de argamassas vibradas e autoadensáveis variando-se os parâmetros tais como a relação água/cimento, superplastificante/cimento, e volume de agregado miúdo/volume de argamassa, mantendo-se constante a relação finos/cimento, e as relações água/materiais secos, bastante próximas. Foram realizados ensaios no estado fresco e no estado endurecido. Para o estado fresco foram realizados de modo a poder nortear as composições, a saber: ensaio Flow- table para os casos de argamassas vibradas e de espalhamento Slump-flow para os casos de argamassas autoadensáveis, ensaio Slump-test para os casos de argamassas vibradas e de escoamento confinado V-funnel para os casos de argamassas autoadensáveis, e avaliação da massa específica aparente. No estado endurecido foram realizados os ensaios de resistência à compressão simples e diametral, e os de absorção d’água. Os resultados foram então comparados uns com os outros ou analisados dentro do seu contexto. Encontraram-se valores que puderam corroborar para as vantagens do uso das cinzas de casca de arroz nas argamassas autoadensáveis, sobretudo nos resultados relativos aos valores das resistências mecânicas alcançadas e dos níveis de absorção d’água. Observou-se também aparente rigidez para os casos das argamassas autoadensáveis. Observou-se que as argamassas autoadensáveis podem al... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The paper presents an exploratory study on the use of rice husk ash as fine in self-compacting mortars. Therefore, we conducted compositions vibrated and self-compacting mortars varying parameters such as the water/cement superplasticizer/cement ratio and the volume of fine aggregate/volume of mortar, keeping constant the fines/cement ratio, and the relationship water/dry materials very close. Assays were performed in fresh and hardened state. For fresh state were conducted in order to guide the compositions as follows: Flow-test table for cases of vibrated mortar Slump-flow and spread in cases of self-compacting mortar, Slump-test assay for the cases of mortars vibrated and V-funnel flow confined to cases self-compacting mortars, and evaluation of the bulk density. In the hardened state were performed strength tests to simple and diametrical compression, and the water absorption. The results were then compared with each other or analyzed in context. They met values that might corroborate the advantages of the use of rice husk ash in self-compacting mortars, particularly in the results for the values of mechanical strength and achieved the levels of water absorption. There was also apparent rigidity for cases of self-compacting mortars. It was observed that the mortar self-compacting can achieve a differentiated behavior in decreasing the water absorption values over time in order to anticipate these reductions within their maximum permitted levels. / Mestre
147

Imagerie géophysique (électrique et sismique) haute résolution et modélisation du système hydrothermal superficiel de la Solfatare de Pouzzoles, Italie du Sud. Application à l’étude des processus hydrothermaux. / Seismic and electric imagery of the upper hydrothermal system of Solfatara, Phlegrean Fields, Italy. Application to the modeling of hydrothermal system.

Gresse, Marceau 12 December 2017 (has links)
Les Champs Phlégréens, situés dans la métropole napolitaine (Italie du sud), forment l’une des plus grandes structures volcaniques au monde. Depuis 1950, ce complexe volcanique manifeste un regain d’activité, qui s’est amplifié au cours de la dernière décennie. Cette accélération s’exprime au travers d’une intensification de la sismicité, de la déformation du sol ainsi qu’une extension de la zone de dégazage. L’ensemble des récentes études s’accorde à dire que le système s’achemine actuellement vers un point critique, sans toutefois pouvoir préciser quand et où pourrait avoir lieu une éventuelle éruption. Cette difficulté à prédire l’état réel du système est principalement associée à la présence d’un système hydrothermal relativement développé. Aux Champs Phlégréens, il est en effet difficile de déconvoluer les signaux provenant du forçage magmatique de ceux résultant de la réponse hydrothermale. L’objectif de cette thèse est donc d’améliorer les connaissances actuelles du système hydrothermal superficiel du volcan de la Solfatara, lieu où se concentre actuellement la reprise d’activité. Pour cela, une approche multidisciplinaire a été menée en deux phases : l’imagerie géophysique du volcan puis la modélisation de son système hydrothermal.La tomographie haute-résolution de résistivité électrique 3-D du cratère a permis de reconnaître les principales formations géologiques et leurs connexions avec les structures et écoulements hydrothermaux. L’interprétation du modèle de résistivité électrique a été réalisée grâce à un ensemble de mesures superficielles complémentaires : flux de CO2, température, potentiel spontané, capacité d’échange cationique et pH du sol. Deux panaches à dominante liquide ont été identifiés : la mare de boue de la Fangaia et la fumerole de Pisciarelli. À la Fangaia, une étude conjointe des modèles de résistivité électrique et de vitesses du sous-sol (obtenues par l’INGV) établit la présence de forts gradients, à la frontière entre panache hydrothermal et zone de dégazage diffus. Au niveau du principal secteur fumerolien, le modèle de résistivité électrique et la localisation des sources acoustiques révèlent clairement l’anatomie d’une zone fumerolienne. Deux conduits séparés, saturés en gaz, alimentent les fumeroles de Bocca Grande et de Bocca Nuova, depuis un même réservoir de gaz situé à ~50 mètres de profondeur. L’intense dégazage diffus produit à proximité de ces fumeroles occasionne la condensation de vapeur. Le modèle de résistivité électrique met en évidence la circulation souterraine de cet important volume d’eau, canalisée à l’intérieur d’une zone fracturée.En utilisant l’ensemble de ces informations structurelles, un modèle thermodynamique des écoulements multiphasiques de la principale zone fumerolienne a été réalisé. Ce modèle reproduit fidèlement les observables des fumeroles : température, flux et rapport CO2/H2O. Il valide l’imagerie géophysique et confirme l’interaction entre la circulation d’eau de condensation et l’un des conduits fumeroliens. Ainsi, cette simulation explique, pour la première fois par un effet d’interaction superficiel, les différentes signatures géochimiques des deux fumeroles : Bocca Nuova et Bocca Grande. L’approche multidisciplinaire, employée dans cette thèse, constitue une nouvelle étape vers une meilleure connaissance des interactions hydrothermales. Celles-ci doivent être prise en compte dans l’objectif de réaliser des modélisations dynamiques précises permettant d’appréhender in fine l’état réel du système volcanique. / The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy), and it is one of the largest volcanic systems on Earth. Since 1950, this volcanic complex shows significant unrest, which accelerated over the last decade with a rise in the seismic activity, ground deformation, and the extent of the degassing area. Recent studies indicate that the volcanic system is potentially moving toward a critical state, although their authors remain unable to point out when and where a possible eruption could take place. The difficulty of predicting the real volcanic state is here mainly related to the hydrothermal system. Indeed, at the Campi Flegrei, it is difficult to separate the magmatic input signal from the hydrothermal response. Hence, the aim of this thesis is to improve our knowledge on the shallow hydrothermal system of the Solfatara volcano, where most of the renewal activity takes place. A multidisciplinary approach has been performed in two steps: first a geophysical imagery of the volcano and second the modeling of its hydrothermal system.The 3-D electrical resistivity tomography of the crater allows to recognize the main geological units, and their connection with hydrothermal fluid flow features. The interpretation of the resistivity model has been realized thanks to numerous soil complementary measurements: CO2 flux, temperature, self-potential, Cation Exchange Capacity and pH. We identify two liquid-dominated plumes: the Fangaia mud pool and the Pisciarelli fumarole. In the Fangaia area, the comparison between electrical resistivity and velocity models reveals strong gradients related to a sharp transition at the border between the hydrothermal plume and the high diffuse degassing region. Combining electrical resistivity model with hydrothermal tremor sources localization reveal the anatomy of the main fumarolic area. Two separated conduits, gas-saturated, feed the two fumaroles Bocca Grande and Bocca Nuova. These conduits originate from the same gas reservoir located 60 m below the surface. The intense degassing activity, produced in the vicinity of fumaroles, creates large amounts of vapor condensation. The resistivity model reveals this condensate circulation, within a fractured area.All these results are incorporated into a multiphase flow model of the main fumarolic area. The simulation accurately reproduces the fumaroles observables: temperature, flux and CO2/H2O ratio. The model validates the geophysical imagery and confirms the interaction between Bocca Nuova fumarolic conduit and the condensate flow. Hence, this simulation explains for the first time the distinct geochemical signature of the two fumaroles due to a shallow water-interaction. The multidisciplinary approach performed in this thesis constitutes a new step toward a better understanding of hydrothermal interactions. Those phenomena have to be taken into account in order to perform dynamic modelling, and thus apprehend the real state of the volcanic system.
148

Evaluation non destructive du gradient de teneur en eau dans les structures en béton armé par résistivité électrique / Non destructive evaluation of water content gradient in reinforced concrete structures by electrical resistivity

Nguyen, Anh Quan 13 December 2016 (has links)
Nous proposons une nouvelle procédure de mesure permettant de tracer la courbe de résistivité en fonction de l'écartement électrode de courant-électrode de potentiel relié à la profondeur d'investigation et au gradient de teneur en eau. Les mesures de résistivité au droit des armatures sont réalisées et une procédure d'inversion permettant de remonter au gradient de résistivité est mise en place. Deux types de mesures ont été effectués expérimentalement, sur des dalles en béton armé et non armée. Deux types de gradient sont étudiés : le séchage et l'humidification. La présence de l'armature diminue significativement la résistivité à cause d'un effet de court-circuit. Les mesures montrent l'intérêt de la procédure pour l'étude du gradient de teneur en eau. Pour la partie numérique la simulation a montré que la mesure de résistivité permet effectivement de déterminer le gradient de résistivité et de définir les paramètres électrochimiques de l'acier via le modèle de Butler-Volmer. / We propose a new measurement procedure that allows drawing a resistivity curve as a function of the spacing between current electrode and potential electrode which is linked to the investigation depth and the water content gradient. The resistivity measurements above the rebars are performed and an inversion procedure to assess the resistivity gradient is carried out. For the experimental part two kinds of measurement are performed on concrete slabs (reinforced and unreinforced). Two gradient types are studied: drying and wetting. The presence of the reinforcement significantly decreases the measurement of the resistivity. The measurements show the interest of the proposed procedure for the study of the water content gradient. Two measurement results were considered in numerical analyses. The simulation shows that it is possible to assess the resistivity gradient and the electrochemical parameters of the rebar via the Butler-Volmer model.
149

Analýza průběhu podpovrchových struktur v reprezentativních řezech výzkumných povodí / Analysis of the subsurface struckutes location in representative transections of the research catchments

DUBEC, Štěpán January 2014 (has links)
This theses is focused on the description of subsurface in the area of interest - Kopaninský and Jenínský stream catchment - and consequently thy most accurate interpretation depth of impermeable bedrock. Geophysical multicable metod (ERT - electrical resistivity tomography") was selected for field measurements. This method of geophysical survey provides the information on subsurface structures, verifies hypotheses and brings new information on the lithological and structural conditions below the surface. ERT measurements were performed automatically by geoelektrical ARES device in combination with inteligent electrodes. The data obtained by field measurements were plotter in the form of resistive sections (using ReS2DInv software) which were used for the later interpretation. The given results determine the depth and process of impermeable bedrock which are important for more accurate data inputs like for modeling rainfall-runoff processes especially in the field of calibration and validation of each adjustment of models as well as for the next other hydrogical analyzes and studies carried out in the research projects. The purpose of this work is to determine the depth of impermeable bedrock and could serve as a data input for MIKE SHE hydrological modeling.
150

Monitoramento temporal da pluma de contaminação do aterro controlado de Rio Claro (SP) por meio do método da eletrorresistividade

Bortolin, José Ricardo Melges [UNESP] 02 October 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-10-02Bitstream added on 2014-06-13T20:33:56Z : No. of bitstreams: 1 bortolin_jrm_me_rcla.pdf: 3726642 bytes, checksum: a4355e8e190b22200038d53f9e35e03e (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Este trabalho contempla um monitoramento temporal da pluma de contaminação do aterro controlado de Rio Claro (SP), por meio do Método da Eletrorresistividade, comparando-se resultados de Imageamentos Elétricos, com arranjo Dipolo-Dipolo, executados nos anos de 1999 e 2008. A base desse método reside em que diferentes materiais, geológicos ou não, apresentam diferentes valores de resistividade elétrica, sendo essa um parâmetro intrínseco dos materiais, o qual se relaciona à dificuldade encontrada por uma corrente elétrica para se propagar em um meio. O chorume gerado em aterros acaba por diminuir a resistividade elétrica do meio natural circunvizinho, caracterizando a contaminação. Assim, zonas de baixa resistividade, com valores menores ou iguais a 50Ω.m, foram associadas à contaminação por chorume. A interpretação conjunta das seções de resistividade aparente permitiu identificar alterações das dimensões da pluma de contaminação no decorrer dos anos. Regida pelos fluxos principal e secundário, a pluma de contaminação avançou em direção aos limites oeste e sul do aterro. Complementarmente, Sondagens Elétricas Verticais permitiram verificar a profundidade do nível freático e o sentido do fluxo d’água, além da caracterização geoelétrica das litofácies sobre as quais está assentado o aterro: sedimentos predominantemente arenosos da Formação Rio Claro e sedimentos predominantemente siltosos da Formação Corumbataí. / This work describes a temporal monitoring of the contamination plume from the controlled landfill of Rio Claro (SP), through the resistivity method, comparing the Electroresistivity Profiling’s results, with Dipole-Dipole array, carried out in 1999 and 2008. The basis of this method lies in that different materials, geological or not, have different values of resistivity, and this is an intrinsic material parameter, which relates to the difficulty experienced by an electric current to propagate in a body. The leachates produced on the landfill diminish the electrical resistivity of the natural ambient, characterizing the contamination. Thus, zones of low resistivity, with values smaller or same a 50ohm.m, had been associates to the contamination for landfill wastewater. The joint interpretation of the sections of apparent resistivity allowed to identify alterations of the dimensions of the contamination plume in elapsing of the years. Governed by the main and secondary flows, the contamination plume advanced in direction to the limits west and soul of controlled landfill. Complementarily, Vertical Electrical Soundings had allowed to verify the depth and the direction of the underground water flow, and to characterize geo-electrically the lithology on which is seated the controlled landfill: sediments predominantly sandy of the Rio Claro Formation and sediments predominantly silty of the Corumbataí Formation.

Page generated in 0.0875 seconds