• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morpological Architecturing of Electroactive Materials in Organic Electronics

Khanum, Khadija Kanwal January 2015 (has links) (PDF)
Morphological architecturing is one of the smart and efficient ways to maximize the number of excitons harvested from the known photoactive materials and existing fabrication technologies. Surfaces and interfaces play a vital role in absorbing light and therefore when patterned regularly, aid in the improvement of light absorption. This thesis deals with the study of light management by morphologically architecturing the organic electroactive materials. Here, morphological architecturing is carried out using electrospinning technique by optimizing various parameters. In the first part, organic photovoltaic system is tailored by morphologically modifying the conjugated polymer active layer and analyzing the enhancement in light collection and hence performance of photovoltaic devices. In the second part, the prospects of using free standing buffer layer instead of thin film buffer layer in a solar cell is evaluated. Furthermore, the study on morphological engineering of conjugated small molecule is carried out, by varying the solvents and derivatives, in order to control morphologies by understanding the underlying mechanism. Overall this thesis attempts to understand the fundamentals in morphological architecturing, by physical architecturing of the small molecules in a device for light management applications as well as demonstrating improvement in light absorption in existing organic photovoltaic systems. In the introduction chapter, a brief description of organic photovoltaics is given followed by highlighting the importance of processing methods in light management and in organic photovoltaics. The significance of structured architecture in improving the device characteristics is presented. The issues and challenges in existing architecturing techniques available in literature are discussed. Electrospinning as a tool for morphological modification for organic photovoltaics is demonstrated. This is followed by an outline of the thesis. In Chapter 2, brief description of procedures carried out for fabrication, characterization and optimization of electrospinning process parameters are discussed. The description of fabrication procedures including electrospinning, spincoating and thermal evaporation are given. Characterization techniques used in this thesis for surface and feature analysis, structural, compositional, optical and opto-electrical analyses are described. Optimization of electrospinning process parameters in obtaining various morphologies are evaluated. In Chapter 3, enhancement of device characteristics of poly (3-hexylthiophene): phenyl C61-butyric acid methyl ester (P3HT: PCBM) by changing active layer film morphology into network structure is elucidated. Network structure is provided by electrospraying assisted hierarchical assembly of short fibrils. Effect of electrospraying parameters such as solvent, polymer blend concentration, applied voltage, tip to collector distance, flow rate and deposition time are analyzed. Solvent and applied voltage are observed to be the major parameters governing the formation of network structure. The optimized conditions are used to investigate the optical and structural properties. Percent reflectance studies showed improvement in light absorption due to increase in surface area. Structural characterization studies indicate an increase in orientation of crystallites and crystallinity as compared to spincoated samples. The optimized conditions along with additional spincoated layer of P3HT:PCBM are used to fabricate bulk heterojunction device. Device characteristics exhibited an increase in short circuit current and thus increase in efficiency from 2.18% to 3.66%. There is a enhancement of 37.5% going from maximum external quantum efficiency of 40%-55% for electrosprayed and spincoated devices. It is anticipated that network morphology could be the next possible structure to be explored in organic photovoltaic materials. In Chapter 4, photonic structure is analyzed and compared. A photonics device requires uniform periodic structural arrangement. Various techniques are used to fabricate these types of structures, employing several steps of fabrication. This work proposes single step hierarchical array of equal submicron size porous structure fabricated by tuning electrospinning processing parameters. The dictating process parameters on evolving structure are high voltage, tip to collector distance and solvent. Morphological and optical investigations suggest that uniform periodic topography helps in light scattering leading to multi reflection and thus enhancement in light absorption. This structure is evaluated as active layer in organic photovoltaic devices using poly (3 hexyl thiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) blend and its device characteristics are analyzed. Consistent and reliable device characteristics obtained through photonic structure is demonstrated. Finally, comparison is drawn to network structure to assess the advantages and limitations of both morphologies as active layer in organic photovoltaics. In Chapter 5, instead of architecturing active layer the next polymer film layer in the organic solar cells, that is the hole transport layer is transformed into free standing nanofiber mats. Morphological, structural and surface wetting properties are assessed for these nanofiber mats followed by fabrication of inverted organic solar cell. The free standing nanofibers mats are obtained by electrospinning the blend of Poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS) a conducting water soluble polymer with other water soluble polymers such as poly vinyl alcohol (PVA) and poly ethylene oxide (PEO). The study is further extended by employing two batches of PEDOT:PSS of varying conductivity that are analyzed side by side for six ternary and two binary blends each. Electrospinning parameters such as applied voltage and flow rate are optimized and fibers of diameter 150-200 nm are obtained. Maximum content of PEDOT:PSS with which free standing fiber mats could be achieved are 98 and 99%. Subsequent increase in PEDOT:PSS results in formation of beads. Surface wetting behavior showed that hydrophillicity increases with increase in PEDOT:PSS content. Devices are fabricated and the variation in characteristics and charge collection with respect to addition of PEO and PVA are discussed. In Chapter 6, a conjugated small molecule is taken as case study unlike the use of the conjugated polymer studies in previous chapters. A mechanism is proposed for tuning the sphere-spike morphology and also to control the crystallite size through solvent management using a conjugated small molecule. Electrospraying of an organic molecule is carried out using various solvents, obtaining fibril structures along with a range of distinct morphologies. Solvent characteristics play a major role in achieving the morphology of the organic material. A thiophene derivative (7, 9-di (thiophen-2-yl)-8H-cyclopenta [a]acenaphthylen-8-one) (DTCPA) of donor-acceptor-donor (DAD) architecture is used to study this solvent effect. Seven solvents with decreasing vapor pressure are selected for experiments. Electrospraying is conducted at a solution concentration of 1.5 wt % and a constant applied voltage of 15 kV. Gradual transformation in morphology of the electrospun product from spikes-sphere to only spikes is observed. A mechanism describing this transformation is proposed based on the electron micrograph analysis and XRD analysis. These data indicate that the morphological change is due to the synergistic effect of both vapor pressure and dielectric constant of the solvents. Through a reasonable control over the crystallites size and morphology along with supporting transformation mechanism theory, the work in this chapter elucidates electrospraying as a prospective method for designing the architectures in organic electronics. In Chapter 7, light management studies are carried out by morphologically architecturing the carbazole derivatives through electrospraying. The effect of derivatives on morphology is analyzed. The two carbazole derivatives; carbazole-benzothiadiazole (Cz-Bz) resulted in 2D structures and carbazole-benzothiadiazole-bithiophene (Cz-Bz-Bt) resulted in 3D structures after electrospraying. These structures are further analyzed to study the effect of vapor pressure of solvents and solution concentration. Structural characteristics indicate that electrospraying imparts change in molecular structure orientation. Optical studies showed 19 – 31% enhancement in light absorption. Further, three types of organic photovoltaic devices are fabricated and the opto-electrical properties are evaluated. Also, the effect of substrate on morphological formation is assessed. In Chapter 8, the major contributions and conclusions drawn from the morphological architecturing of both conjugated polymers and small molecules are summarized, along with few recommendations for future research.
2

Hybrid electroactive morphing at real scale - application to Airbus A320 wings / Morphisme électroactif hybride à échelle réelle - application à une voilure de type Airbus A320

Jodin, Gurvan 25 October 2017 (has links)
Le Morphisme Electroactif est un axe multidisciplinaire, associant l’aérodynamique, les matériaux innovants et la mécatronique. Ce concept consiste en l’amélioration des performances aérodynamiques par l’utilisation d’actionneurs déformant la surface portante d’un aéronef en temps réel. Soutenue par Airbus, la modélisation, conception et réalisation d’un démonstrateur petite échelle est une première étape. Basée sur un profil d’aile A320, il est équipé d’actionnements pour le morphisme électroactif hybride : de grandes déformations à faibles vitesses par des Alliages à Mémoire de Forme sont associés à l’intégration au bord de fuite d’actionneurs piézoélectriques permettant de hautes fréquences d’actionnement à amplitude moindre. Une seconde étape de la thèse est dédiés aux essais en soufflerie. La mesure de forces et la vélocimétrie d’images de particules permettent de comprendre la physique de l’écoulement et de la turbulence. L’étude de ce couplage fluide-structure-actionneurs présente les effets du morphisme par actionnement indépendant ; puis le couplage non linéaire de l’actionnement hybride. La troisième étape consiste au passage vers une échelle réaliste des actionneurs, par la conception d’un volet « électro-morphé ». Une approche de dimensionnement par optimisation est proposée. Basé sur des technologies nouvelles d’actionnement, un prototype d’un tel macroactionneur est alors conçu pour être testé. / Electroactive Morphing is a multidisciplinary axis, combining aerodynamics, innovative materials and mechatronics. This concept consists in improving the aerodynamic performance by the use of actuators deforming the airfoil of an aircraft in real time. Supported by Airbus, the modeling, design and implementation of a small scale demonstrator is a first step. Based on an A320 wing profile, it is equipped with actuators for hybrid electroactive morphing: large deformations at low speeds by Shape Memory Alloys are associated with the integration at the trailing edge of piezoelectric actuators allowing high operating frequencies at lower amplitude. A second step of the thesis is dedicated to wind tunnel tests. The measurement of forces and the Particle Image Velocimetries allow for the understanding of the flow and turbulence physics. The study of this fluid-structure-actuator coupling presents the effects of the morphism by independent actuation; then the nonlinear coupling of the hybrid actuation. The third step is the transition to a realistic scale of actuators, by designing an "electro-morphed" macro-actuator. An optimization sizing approach is proposed. Based on new actuation technologies, a prototype of such a macro-actuator is then designed to be tested.
3

Conception d'un microsystème d'aide au monitoring per-opératoire dans la chirurgie de l'oreille moyenne / Desing and modeling of a micro sensor used in the frame of middle ear surgery

Arthaud, Yoann 19 July 2011 (has links)
Certains problèmes d’audition trouvent leur origine dans des anomalies de transmission de l’énergie des vibrations acoustique par la chaîne des osselets de l’oreille moyenne. Il se pratique aujourd’hui des opérations chirurgicales visant à la reconstruire. Un outil permettant d’évaluer la qualité de transmission des vibrations par de la chaîne ossiculaire pendant l’opération apporterait une aide substantielle au praticien afin dans le but d’optimiser la configuration des osselets. Les travaux présentés dans ce manuscrit traitent de la conception d’un capteur microsystème adapté à la mesure de l’amplitude de vibrations des osselets. Nous y avons particulièrement développé les travaux de modélisation de la structure mécanique du capteur. Il s’agit d’une structure communément employée pour les capteurs tactiles dont nous modélisons le comportement en régime harmonique. Dans une la deuxième partie nous présentons une étude d’optimisation du capteur en vue de son utilisation « tenu en main » par le chirurgien. Celle-ci repose notamment sur l’utilisation d’un modèle électrique équivalent de l’oreille moyenne et d’un logiciel d’optimisation multicritères. Nous présentons dans cette partie un concept de filtre mécanique des basses fréquences par l’utilisation des propriétés viscoélastiques des matériaux polymères. La dernière partie traite des travaux de réalisation des différents composants d’un capteur basé sur les matériaux polymères. Les travaux de réalisation et de test de membranes en résine SU8 y sont présentés ainsi que l’intégration de jauges en matériaux électroactifs chargés en nanoparticules. L’utilisation d’une technique de moule perdu pour réaliser la structure mécanique du capteur est discutée. / Acoustic transmission anomalies of the middle ear ossicular chain can result in hearing losses. Nowadays some surgical interventions allow significant hearing improvements by reconstructing the ossicular chain. A tool able to evaluate vibration transmission along the ossicular chain would be of great help to the surgeon. The work presented in this manuscript deals with the conception design of a MEMS sensor adapted suitable ftoor ossicle’s vibration amplitude measurement. Modelling of the sensor structure mechanical behaviour has been particularly developed. The presented structure which is similar to onethat widely used in tactile sensors conception design that wewas modelled ins the harmonic vibrating regime here.
4

Fabrication additive de matériaux électroactifs pour applications à la mécatronique / Additive manufacturing of electroactive materials for mechatronics applications

Ganet-Mattei, Florent 05 February 2018 (has links)
La Fabrication Additive (FA) est un procédé de fabrication qui a commencé à se développer dans les années 80 et qui atteint actuellement une maturité qui lui permet d’être utilisé de manière rentable et fonctionnelle par les industriels. La fabrication additive est définie comme étant le procédé de mise en forme d’une pièce par ajout de matière, à l’opposé de la mise en forme traditionnelle par enlèvement de matière (usinage). Cette nouvelle technologie est une réelle révolution et permet de relever de nouveaux défis technologiques sans précédent. Que ce soit sur un axe matériau ou plus largement dans le cadre de l’usine du futur, la fabrication additive est un réel levier de croissance, mais de nombreux travaux de recherche sont encore à mener afin de perfectionner cette nouvelle technologie. C’est autour de cette problématique que les travaux de thèses se sont focalisés avec un accent sur l’intégration de matériaux électroactifs pour la réalisation de fonction mécatronique tirant profit des procédés de Fabrication Additive. Les actions de recherche montrent que la fabrication additive de matériaux électroactifs sera de plus en plus employée pour la réalisation de fonctions mécatroniques hybrides qui combineront à la fois la structure mécanique, des circuits intégrés en silicium, des pistes conductrices et des matériaux couplés imprimés, intégrant ainsi des fonctionnalités, telles que des capteurs, des affichages ou des sources d’énergie. Les travaux montrent le potentiel applicatif autour du contrôle de santé des structures en composites, mais aussi du contrôle de forme d’instrument pour la chirurgie. Pour arriver au développement de ces dispositifs, les points suivants ont été développés autour des matériaux électroactifs et de leurs règles d’intégrations et d’optimisation. / Additive Manufacturing (FA) is a manufacturing process that began to develop in the 1980s and is now mature enough to be used in a cost-effective and functional way by manufacturers. Additive manufacturing is defined as the process of shaping a part by adding material, as opposed to traditional shaping by material removal (machining). This new technology is a real revolution and enables us to meet new unprecedented technological challenges. Whether on a material axis or more widely as part of the plant of the future, additive manufacturing is a real growth driver, but many research work is yet to be conducted to perfect this new technology. It is around this issue that the work of theses focused with a focus on the integration of electroactive materials for the realization of mechatronics function taking advantage of Additive Manufacturing processes. Research shows that additive manufacturing of electroactive materials will be increasingly used for the realization of hybrid mechatronic functions that will combine both the mechanical structure, silicon integrated circuits, conductive tracks and printed coupled materials, integrating as well as features, such as sensors, displays or power sources. The work shows the potential application around the health control of composite structures, but also the instrument shape control for surgery. To arrive at the development of these devices, the following points have been developed around electroactive materials and their integration and optimization rules.

Page generated in 0.1189 seconds