• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 15
  • 14
  • 12
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesis Of Conducting Polymers Of Terepthalic Acid Bis-(2-thiophen-3-yl-ethyl)ester And Investigation Of Their Electrochromic Properties

Coskun, Yelda 01 June 2004 (has links) (PDF)
Terepthalic acid bis-(2-thiophen-3-yl-ethyl)ester (TATE) was synthesized through the reaction of 2-thiophen-3-yl-ethanol and terepthaloyl chloride. Electrochemical behavior of the TATE and TATE in the presence of thiophene were studied by cyclic voltammetry (CV). The chemical structure of monomer is characterized via Nuclear Magnetic Resonance Spectroscopy (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Homopolymer of TATE was synthesized by galvanostatic and potentiostatic methods, and copolymerization of TATE with thiophene was achieved via potentiostatic method. Both homopolymer (PTATE) and copolymer [P(TATE-co-Th)] were characterized by various techniques including cyclic voltammetry, FTIR, Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermal Gravimetry Analysis (TGA) and UV-VIS Spectrophotometer. Conductivities of samples were measured by four probe technique. Electronic band gap of polymers measured as the onset of the &amp / #960 / -&amp / #960 / * transition using spectroelectrochemical analysis and colorimetry studies were investigated. Dual type polymer electrochromic devices (ECDs) based on PTATE, P(TATE-co-Th) and poly(3,4-ethylenedioxythiophene) (PEDOT) have been constructed. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-Vis Spectrophotometer and Cyclic Voltammetry.
32

Matériaux et dispositifs électrochromes à base de NiO modifié en couches minces / Electrochromic properties of modified NiO thin films

Moulki, Hakim 07 June 2013 (has links)
Ce travail de thèse a été réalisé dans le cadre du programme européen INNOSHADE, dont l’objectif était la réalisation de dispositifs électrochromes à coloration neutre. Cette coloration neutre est le résultat de l’association dans un même dispositif de la couleur marron de films à base d’oxyde de nickel avec celle bleue de films d’oxyde de tungstène ou de PEDOT. Nos recherches ont été orientées vers des films minces d’oxyde de nickel modifié contenant des ions nickel trivalent, alliant porosité et désordre structural. Deux techniques de dépôt ont été utilisées : l’ablation laser et le trempage-retrait (dip-coating). Des processus de coloration et de décoloration de ces films en milieux liquides ioniques hydrophobes lithiés et non lithiés, faisant intervenir la participation d’anions tels que TFSI-, ont été mis en évidence pour la première fois dans cette thèse. Les dispositifs tout solides correspondants présentent des efficacités optiques élevées et une bonne durabilité. / Electrochromic devices, ECDs, are able to change their optical properties under an applied voltage. In the framework of the European project INNOSHADE, the aim of the current work is the development of neutral color ECDs based on nickel oxide thin films as counter electrode. Ni3+ containing NiO thin films, called modified NiO thin films, were deposited both by Pulsed Laser Deposition and chemical route. When cycled in lithium based electrolyte, the comparison of the EC behavior of non-stoichiometric NiO thin films points out a higher electrochemical capacity associated with a larger optical contrast for the films synthesized by chemical route due in particular to a larger porosity. Highlighting a novel approach, herein we demonstrate faster kinetics for modified NiO thin films cycled in lithium ion free electrolyte and suggest the participation of anions. High electrochromic efficiency and nice durability of all-solid state devices associating modified NiO and WO3 or Poly(3,4 –ethylenedioxythiophene) PEDOT layers are reported.
33

Dispositivos eletrocrômicos com azul da Prússia e eletrólitos sólidos poliméricos / Electrochromic devices with Prussian blue and solid polymer electrolytes

Lucas Marinho Nobrega de Assis 11 May 2016 (has links)
Este trabalho apresenta os resultados do preparo e caracterização de dispositivos eletrocrômicos (ECD - electrochromic devices) contendo filmes finos de azul da Prússia (PB) como camada eletrocrômica, CeO2-TiO2 como contra-eletrodo e eletrólitos à base de polímeros contendo glicerol, formaldeído e γ-butirolactona. Os filmes finos de azul da Prússia foram preparados pelo método de eletrodeposição galvanostática e usados para montagem de dispositivos eletrocrômicos com eletrólitos de composição polimérica variada. Os filmes finos foram caracterizados através de medidas de densidade de carga, voltametria cíclica e transmitância no UV-Vis, além de análises morfológicas por microscopia de força atômica (AFM) e microscopia de varredura eletrônica (MEV), elipsometria, medidas de espessura, ângulo de contato e eficiência de coloração. O filme eletrodepositado por 300 s apresentou densidade de carga de 1,62 mC.cm-2 e 0,98 de reversibilidade com rugosidade de 17,7 nm, espessura de 315 nm via elipsometria e 216 nm via perfilometria. A eficiência de coloração calculada foi de 131,4 cm2.C-1 e os valores de ângulo de contato e energia livre de superfície também foram calculadas. As análises voltamétricas dos filmes finos revelaram picos característicos dos processos de oxidação e redução e as análises espectroscópicas apresentaram variação de transmitância de 71,6 % em 686 nm em solução eletrolítica de KCL 1 mol.L-1. Foram preparados e caracterizados dispositivos com eletrólitos a base de gelatina comercial com sal LiClO4; poli(vinil butirato) (PVB) com par iônico LiI/I2; PVB com LiClO4; PVB com par iônico LiI/I2+disperse red; ágar com LiClO4; ágar com sal Eu(CF3SO3)3; DNA com LiClO4; DNA com sal Er(CF3SO3)3; pectina com LiClO4; HPC com ácido acético; HPC com LiClO4 e PVDF com LiClO4. Dentre os resultados obtidos, os melhores resultados de densidade de carga de 10,1 e 8,5 mC.cm-2 foram obtidos para os dispositivos com eletrólitos de HPC e pectina, ambas com sal LiClO4. Voltamogramas cíclicos das amostras estudadas revelaram picos anódicos e catódicos referentes à extração e inserção de íons de lítio e/ou prótons, e elétrons no filme de PB. As análises de transmitância em 686 nm entre o estado colorido e descolorido dos dispositivos mostraram os valores de 40,2% para a janela contendo eletrólito à base de gelatina com LiClO4 e 35,2 % para a janela com ágar e sal Eu(CF3SO3). Além disso, também foi verificada a estabilidade dos dispositivos revelando a duração entre 400 a 2200 ciclos cronoamperométricos, dependendo do eletrólito usado. Os resultados obtidos mostram que os dispositivos estudados neste trabalho são potenciais candidatos para aplicações práticas em dispositivos eletrocrômicos. / This work presents the results of the preparation and characterization of electrochromic devices (ECDs) containing a thin film of Prussian blue (PB) as electrochromic layer, CeO2-TiO2 as a counter electrode and electrolytes based on polymers containing glycerol, formaldehyde, and γ-butyrolactone. Thin films of Prussian blue were prepared by galvanostatic electrodeposition method and used for the assembly of electrochromic devices with varying polymer composition of electrolytes. The thin films were characterized by charge density measurements, cyclic voltammetry, transmittance in the UV-Vis, and morphological analyzes such as atomic force microscopy (AFM) and scanning electron microscopy (SEM). Moreover, there were subjected to ellipsometry, thickness, contact angle, and coloring efficiency measurements. The electrodeposited film of 300 s had charge density of 1.62 mC.cm-2 and 0.98 of reversibility with roughness of 17.7 nm and thickness of 315 nm via ellipsometry and 216 nm via profilometry. The calculated color efficiency was 131.4 cm2.C-1 and the contact angle values and surface free energy were calculated. The voltammetric analyzes of thin films showed characteristic peaks of oxidation and reduction processes and spectroscopic analysis showed 71.6% transmittance variation at 686 nm in 1 mol.L-1 KCL electrolyte solution. ECD were prepared and characterized, using electrolytes such as commercial gelatin with LiClO4 salt; poly (vinyl butyrate) (PVB) with ion pair LiI/I2; PVB with LiClO4; PVB with ion pair LiI/I2 + disperse red; agar with LiClO4; agar with Eu(CF3SO3)3 salt; DNA with LiClO4; DNA with Er(CF3SO3)3 salt; pectin with LiClO4; HPC with acetic acid; HPC with LiClO4 and PVDF LiClO4. The best results of charge density of 8.5 and 10.1 mC.cm-2 were obtained for devices with HPC electrolytes and pectin, both with LiClO4 salt. Cyclic voltammetry of the studied samples revealed anodic and cathodic peaks relating to the extraction and insertion of lithium ions and/or protons and electrons in the PB film. The transmittance at 686 nm analysis between the colored state and discolored windows showed values of 40.2% for the window containing electrolyte of gelatin with LiClO4 and 35.2% for the window with agar and Eu(CF3SO3) salt. Furthermore, the stability of the devices was also recorded revealing the duration between 400-2200 chronoamperometric cycles, depending on the used electrolyte. The results show that the windows studied in this work are potential candidates for electrochromic devices applications.
34

Studium elektrochemické inzerce kationtů do oxidů přechodových kovů / Study of Electrochemical Insertion Cations to the Oxides of Transitive Metals

Svoboda, Vít January 2010 (has links)
Electrochromic devices are based on the intercalation processes to the active layer mostly WO3. The optical properties of active layer are changed by intercalation ions from the electrolyte. For that purpose are used Li ions. The mass of thin layer can be observed by the QCM method. This method is based on the changes of the resonance frequency of a quartz crystal resonator. The investigated substance is deposited on the surface of the resonator. Various metals (Pt, Au, Ag) and their compounds should be plated on the resonator. Most frequently, the resonators for the frequency 5,0 MHz are used. This frequency change is used for the detection of chemical changes of the electrode surface and is very sensitive.
35

Electron Spin Resonance And Optical Studies On The Conducting Polymer Polyaniline

Sitaram, V 07 1900 (has links) (PDF)
For every phenomenon found in inorganic materials, organic counterparts have been found in the last 50 years. The discovery of metallic conductivity in the inorganic conjugated polymer (SN)x was a forerunner to the discovery of metallic conductivity in Polyacetylene [1]. It was soon followed by the development of Polypyrrole and Polythiophene, and by the rediscovery of Polyaniline as a conducting polymer [2]. In polymers like Polyacetylene and Polythiophene, doping is by a redox reaction where the incorporation of electron withdrawing groups creates charge carriers in the polymer backbone. In contrast to these polymers, the main doping mechanism in Polyaniline is protonation, that is the attachment of a proton (donated by an acid) to specific sites (imine and amine groups) in the polymer. The protonated groups are also the sites where water and oxygen interact with the charge carriers on the polymer chain. A wide variety of quasi-particle states (excitons, bipolarons, separated polarons and polaron lattice forms) exist in Polyaniline, in its different states of oxidation and protonation. All of them have different transport and optical signatures. Out of these, only the polaron lattice gives rise to a half-filled conduction band, and therefore a metallic state [3]. This fascinating interplay of protonation and metallic features in Polyaniline, combined with its easy processibility, has made Polyaniline an attractive conducting polymer. Therefore the main focus of this thesis is on the role of the dopant on the electronic and optical properties of doped Polyaniline. The first chapter describes the main features of Polyaniline and its doping by protonation. The second chapter describes the experimental and simulation methods used in this thesis. Steady improvements in processing have led to reduced disorder in the samples, and have given rise to stronger metallic features like metallic (Drude-like) reflectivity in the infrared frequencies, and a positive temperature coefficient of the logarithmic derivative of the conductivity. High molecular weight Polyaniline doped with sulfonic acid dopants by surfactant-counterion processing, like Polyaniline doped with AMPSA (2-acrylamido-2-methyl-1-propanesulfonic acid) [4] and cast from dichloroacetic acid (DCA), shows all the metallic features indicative of an intrinsic metallic state [5]. In this thesis, the third chapter describes the spin-charge dynamics of Polyaniline doped with AMPSA (PANIAMPSA) through X-band Electron Spin Resonance studies [6]. Electron Spin Resonance (ESR) is an important technique to probe the spin-charge dynamics of conducting polymers [7, 8]. The X-band ESR spectra of PANI doped with AMPSA showed the presence of two lines (one broad and one narrow) at all temperatures and doping levels, indicative of two types of spin carriers. Three interesting features were observed in our study: a large linewidth ( ~100 Gauss), a maximum of ESR linewidth at ~ 25 K, and a surprising independence of linewidth on water/O2 . The temperature dependence of both linewidths suggests that the broad line is due to the delocalised charge carriers in well-ordered regions, and that the narrow line is due to localised spins in the disordered regions in the sample. Although the XRD spectra showed minimal crystallinity, the ESR and SQUID susceptibility had a strong Pauli contribution, indicative of an intrinsic metallic state. A similarity of the temperature dependence of linewidths of PANI-AMPSA with MWNT-s and HOPG graphite suggested that some quasi-2-D (Q2D) ordering is present in PANI-AMPSA. From Semi-empirical molecular modelling studies, a plausible hydrogen bonding pattern is suggested that can give rise to the Q2D graphene-like arrangement of the PANI polymer chains. This ordering is due to hydrogen bonding between the acrylamido group of the dopant and the amine fragment of the Polyaniline backbone. Hydrogen bonds are not just structural linkers between adjacent chains; they can have subtle effects on electronic states of the polymer backbone due to charge transfer/withdrawal by the hydrogen bond from the delocalised β-electron system of the backbone. The same Q2D model is used to explain the water/oxygen independence of linewidth in PANI-AMPSA. The temperature dependence of linewidth of both lines has been explained in terms of the QTDG (Quasi Two Dimensional Graphite) model, where a strong exchange interaction is presumed to arise between the 2D delocalised charge carriers and the localised spins, leading to a low-temperature peak in the the linewidth. Water is known to significantly enhance the conductive properties of doped Polyaniline [9]. A detailed DFT (Density Functional Theory) modelling study of the influence of water in doped Polyanilines is presented, which clearly indicated that water enhances the charge transfer between the counterion and the polymer backbone. The torsion angles between the adjacent phenyl rings of the emeraldine base decrease when the imine nitrogens are protonated by inorganic acids like HCl and HBr, and hydration of the acid counterions further decrease the torsion angles. In contrast, the torsion angles of the AMPSA protonated Polyaniline are already low (comparable to the hydrated cases), and the charge transferred by AMPSA is also enhanced. Visualisation of the molecular structure of the PANI-AMPSA complex suggested that water molecules may play a minimal role in the electronic properties of AMPSA doped Polyaniline. We suggest the Q2D ordering as the reason for the temperature dependence of the linewidth, the lack of oxygen and water dependence of the linewidth, as well as the enhanced metallic properties in PANI-AMPSA, as compared to other doped Polyanilines. The electronic states of Polyaniline are modified by both redox processes and protonation. This gives rise to a wide variety of optical states, which can be easily accessed by both applied potential and pH [10]. Therefore Polyaniline displays strong electrochromism across the visible, near-IR (NIR), IR and even microwave spectral regions. This feature has wide applications in electrochromic devices. However, a fundamental understanding of the phenomena behind this electrochromism, the charge carrier(s) responsible, and the relation of nanoscopic morphology and electrochemical properties to the electrochromism, is still not clear. In the fourth chapter, we have analysed extensive data from electrochromic devices [11]. Clear assignments are that certain population states contribute predominantly to certain spectral regions (e.g. bipolaron states to the IR, the valence band to the visible and other mid-gap states to the microwave). Among more specific findings, a prominent 7µm (0.16 eV) peak in MIR devices is ascribed to bipolarons, while a low-energy transition at 0.054 eV is ascribed to inter/intra-chain transitions. Each of these transitions is tracked with respect to changes in applied potential, as well as correlated with device morphology and construction. Our analysis of UV-Vis-MIR-FIR-microwave results along with detailed SEM data clearly relates performance in different wavelength regions to morphology. Preliminary kinetics analysis show that the diffusion rates in these devices could be improved further. These findings point to the potential design of very broad-band electrochromic systems encompassing the visible through microwave regions. Polyaniline in its insulating states can be considered as a series of linked oligoanilines. These oligoaniline states can either be considered as a model for describing the properties of the polymer, or can be interesting systems themselves in the light of single-molecular electronic devices [12]. Both applied potential and pH can change the electronic states of these systems. The ability of pH to modify the oxidation states in these systems (and induce electronic transport), and the influence of water on these properties can be a model for biological systems too. While a wealth of information on oligoanilines has been generated from experiments, computational modelling of these systems is less reported. Among many computational methods that have been developed for calculation of optical absorption spectra of molecules, Time Dependent Density Functional Theory (TDDFT) is the method with the widest use. TDDFT obtains the excitation energies of a molecule from the linear response of the electronic density to a external perturbing field [13]. Solvent effects, which are known to affect the excitation energies, are included through the SCRF/PCM (Self-consistent Reaction Field/ Polarizable Continuum Model). PCM is a method that treats the solvent molecules as a continuum, and self-consistently evaluates their electronic distribution around the solute. In the fifth chapter, a systematic study of the optical properties of neutral oligoaniline, in three oxidation states, is performed by varying the chain length and linearity of the backbone. The intrinsic accuracy in the excitation energies obtainable by the combined TDDFT/PCM formalism has enabled us to suggest effective oligomer lengths for the optical transitions in Polyaniline; these are 4 rings for emeraldine base, 4–8 rings for leucoemeraldine base and 4 rings for pernigraniline. The sensitivity of the 2.0 eV exciton peak in emeraldine base to the chemical environment is also apparent from this work. The Valence Density of States (VDOS) and vibrational frequencies, that have been obtained in course of these simulations, have been quantitatively analysed and are a useful addition to understanding the optical properties of neutral Polyanilines. A summary of the results of the dopant and water dependence on the electronic and structural properties of protonated oligoanilines was presented in the third chapter; the appendix describes the methodology in detail. It is worthwhile to emphasize that doped Polyaniline is a system where protonation, hydration and extended β-conjugation all occur together synergistically, and a good overall description of this system is necessary. Modelling the doped state of Polyaniline is a bit more difficult, due to spin polarisation. Ideally, conducting Polyaniline should be modelled in the solid state, with neighbouring chains, counterions and water molecules. Water is known to reversibly increase the macroscopic conductivity and ESR linewidth of doped Polyaniline. In the sixth chapter of this thesis, optical spectra of the bipolaron, separated polaron, and the polaron lattice forms of doped Polyaniline, explicitly including the counterions (Cl, Br, AMPSA) are obtained by the TDDFT method. All the polaronic lattice forms show a dominant absorption at 1.0–1.2 eV, with no absorptions in the range 1.4–2.0 eV. The inclusion of water molecules to solvate the counterions is shown to only weakly modify the optical properties in the polaron lattice form. In the case of polarons on a twisted chain, the 1.0 eV peak is shifted to 1.5 eV. For bipolarons, there is an absorption at 1.3–1.5 eV, along with another peak at 1.8 eV. Comparing with experimental spectra we suggest that the 1.5, 2.8 eV set belongs to a polaron lattice form wherein the chains are twisted. However, individually the 1.5 eV peak may equally come from bipolarons or separated polarons. The peak at 1.8 eV may either be ascribed to a bipolaron form (in which case there should be a 1.5 eV peak too), or to an isolated polaron. The isolated polaron may also show a peak at 2 eV and 3.5 eV that is clearly from a residual emeraldine base electronic state. The steady evolution of the (a) 2 eV exciton peak in emeraldine base to a (b) 1.6– 1.8 eV peak (isolated polarons) to a (c) 1.5 eV peak in the bipolaron form to (d) 1.3 eV peak in the separated polaron form to (e) a 1.0–1.2 eV peak in the fully doped metallic polaron lattice form is clear. This steady evolution observed from TDDFT simulations may help in clarifying the experimental assignments, especially in electrochemical studies on Polyaniline. Simulations including the water molecules were performed to study the experimentally observed dramatic changes on hydration in Polyaniline. However hydration of ions is a dynamic process and static geometries may not provide a fully realistic description. Combined ab initio Molecular Dynamics (AIMD) and TDDFT calculations may be necessary to realistically model the transport properties of doped Polyaniline. This chapter tries to lay a foundation for such work. The main results obtained in this thesis are summarized in the conclusion. To conclude, this thesis is on the electronic and optical properties of Polyaniline. An ESR study on AMPSA doped Polyaniline indicated a unique 2D nanoscopic morphology, and this structure was validated by molecular modelling. The detailed analyses on electrochromic devices led us to perform TDDFT simulations of neutral and doped Polyanilines. These simulations have resulted in clear UV-VIS-IR assignments in all forms of Polyaniline.
36

Viologen-Immobilized 2D Polymer Film Enabling Highly Efficient Electrochromic Device for Solar-Powered Smart Window

Wang, Zhiyong, Jia, Xiangkun, Zhang, Panpan, Liu, Yannan, Qi, Haoyuan, Zhang, Peng, Kaiser, Ute, Reineke, Sebastian, Dong, Renhao, Feng, Xinliang 13 April 2023 (has links)
Electrochromic devices (ECDs) have emerged as a unique class of optoelectronic devices for the development of smart windows. However, current ECDs typically suffer from low coloration efficiency (CE) and high energy consumption, which have thus hindered their practical applications, especially as components in solar-powered EC windows. Here, the high-performance ECDs with a fully crystalline viologen-immobilized 2D polymer (V2DP) thin film as the color-switching layer is demonstrated. The high density of vertically oriented pore channels (pore size ≈ 4.5 nm; pore density ≈ 5.8 × 1016 m-2) in the synthetic V2DP film enables high utilization of redox-active viologen moieties and benefits for Li+ ion diffusion/transport. As a result, the as-fabricated ECDs achieve a rapid switching speed (coloration, 2.8 s; bleaching, 1.2 s), and a high CE (989 cm2 C-1), and low energy consumption (21.1 µW cm-2). Moreover, it is managed to fabricate transmission-tunable, self-sustainable EC window prototypes by vertically integrating the V2DP ECDs with transparent solar cells. This work sheds light on designing electroactive 2D polymers with molecular precision for optoelectronics and paves a practical route toward developing self-powered EC windows to offset the electricity consumption of buildings.
37

ORGANIC ELECTROCHROMIC MATERIALS AND DEVICES: OPTICAL CONTRAST AND STABILITY CONSIDERATIONS

Kuluni Perera (15351412) 25 April 2023 (has links)
<p> In an era of advancing printed electronics, solution-processable organic semiconductors continue to make significant strides in electronic and optoelectronic applications. Electrochromic (EC) technology, which encompass reversible optical modulation under electrochemical biasing, has progressed rapidly over the past half-century and developed into niche commercial-scale devices for auto-tinting glasses as well as low-power, non-emissive displays. To utilize the advantages of organic electrochromic materials in next-generation devices, it is imperative to understand their fundamental material properties, interactions with other device components, and the underlying electrochemistry that governs the overall optical and electrochemical response of the complete electrochromic device. This dissertation presents a discussion on the synergistic role of organic electrochromes, charge-balancing layers and electrolytes in determining two key performance metrics, namely the optical contrast and operational stability, of an electrochromic device (ECD). The absorption features of colored-to-transmissive switching conjugated polymers have been investigated by exploring material design strategies in conjunction with analytical approaches to optimize and enhance the optical contrast. In parallel, transmissive redox-active radical polymer counter electrodes have been developed as compatible charge-balancing layers and integrated into devices by pairing with electrochromic polymers (ECPs) to achieve stable and high-contrast optical modulation. Electrochemical activity of both conjugated and radical polymer electrodes in different ionic and solvent environments have been further examined to understand material-electrolyte interactions governing mixed ionic-electronic conduction. Finally, a small molecular approach to realizing transparent-to-colored electrochromism is discussed, where distinct substituent-induced degradation pathways of conjugated radical cations were revealed. Overall, this research aims to assist future development of robust, ultra-high contrast organic electrochromic platforms.  </p>

Page generated in 0.0442 seconds