• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing Routes for Aluminum based Nano-Composites

Yu, Hao 27 April 2010 (has links)
The term "Metal Matrix Nano-Composites (MMNCs)" broadly refers to a composite system that is based on metal or alloy substrate, combined with metallic or non-metallic nano-scale reinforcements. The main advantages of MMNCs include excellent mechanical performance, feasible to be used at elevated temperatures, good wear resistance, low creep rate, etc. In the recent past, MMNCs have been extensively studied, especially the method of fabrication as the processing of such composites is quite a challenge. Though a variety of processing methods have been explored and studied over the years, none have emerged as the optimum-processing route. The major issue that needs to be addressed is the tendency of nano-sized particles to cluster and also the challenge as to how to disperse them in the bulk melt. This work explored the feasibility of utilizing Lorentz forces to address both of these critical issues: clustering and dispersion. The work was carried out both theoretically as well as with accompanying validation experiments. The results indicate that Lorentz Forces may be viable and should be considered in the processing of MMNCs.
2

Modeling of electric arc furnaces (EAF) with electromagnetic stirring

Arzpeyma, Niloofar January 2011 (has links)
The influence of electromagnetic stirring in an electric arc furnace (EAF) has been studied. Using numerical modeling the effect of electromagnetic stirring on the thermal stratification and fluid flow has been investigated. The finite element method (FEM) software was used to compute the electromagnetic forces, and the fluid flow and heat and mass transfer equations were solved using a finite volume method (FVM) software. The results show that electromagnetic stirring has a significant effect on temperature homogenization and mixing efficiency in the bath. The important part of this study was calculation of heat transfer coefficient. The results show, electromagnetic stirring improves the heat transfer from the melt to scrap which is dependent on the stirring direction and force magnitudes.
3

Efeito da agitação eletromagnética nas propriedades de aços AISI 1025 forjados a quente

Yurgel, Charles Chemale January 2014 (has links)
Este trabalho tem como objetivo avaliar o efeito do processo de agitação eletromagnética (AE) utilizado no lingotamento contínuo (LC) e nas propriedades mecânicas e metalúrgicas dos aços ABNT 1025 (com adições de manganês e silício) forjados a quente, para a confecção de flanges de tubulações industriais. As matériasprimas fornecidas foram caracterizadas através de composição química e macrografia. Compararam-se os aços provenientes de três condições de fornecimento: 1º) LC sem AE somado à laminação a quente (LQ); 2º) LC com AE; e 3º) LC sem AE. Em seguida, foram extraídos billets de seção quadrada de 120mmx120mmx58mm das três condições citadas para subsequentes forjamentos a quente e fabricação de flanges. Assim, são mostrados os resultados das propriedades obtidas e a comparação com a norma de validação ASTM A 105 (especificação padrão para forjados de aço carbono para aplicação em tubulações) utilizada nesse tipo de forjado. Através da norma, foram verificados os requisitos químicos e ensaios de tração e de dureza. As propriedades foram, também, analisadas através de metalografias (macro e micro), ensaios de impacto e ensaios não destrutivos de líquidos penetrantes. Através da teoria elementar da plasticidade, os valores requeridos para a força de forjamento da peça em estudo, durante o processo de forjamento a quente, foram estimados em caráter formativo e didático. De acordo com os fundamentos teóricos observados na revisão bibliográfica e com os resultados práticos obtidos, constatou-se a aprovação dos aços provenientes do LC com AE como alternativa aos provenientes da LQ (tradicionalmente fornecidos às forjarias) para a confecção de flanges forjados desse tipo de aço. Na análise dos forjados provenientes do LC sem AE também ocorreu a reprovação de diversos resultados, mostrando o efeito da AE como alternativa para as propriedades desse tipo de forjado. / The objective of this work is to evaluate the effect of the process of electromagnetic stirring (ES) used in continuous ingot (CI) in the mechanical and metallurgic properties of 1025 ABNT hot forged steels (with the addition of manganese and silicon) for the manufacture of flanges of industrial pipes. At first, the supplied raw materials were characterized trough chemical compound and macrograph. Then, steels from the following three supplying conditions [ 1º) CI without ES plus hot rolling (HR); 2º) CI with ES; and 3º) CI without ES] were compared. Afterwards, billets were extracted from a square section measuring 120mmx120mmx58mm, from the three previous conditions, to be hot forged and to the manufacture of connection flanges. Thus, the results from these properties and the comparison with the validation norm ASTM A 105 (standard specification for steel-carbon forgings for the application in pipes) for this type of forged are shown. Through this norm, chemical requirements, tension and hardness tests were verified. The properties were also analyzed through metallographies (macro and micro), impact tests and non-destructive tests of penetrating liquids. Through the elementary plasticity theory, the demanded values for the forging force of the studied piece, during the hot forging process, were estimated as didactic and formative natures. According to the theoretical substances observed in the bibliography and to these practical results, the steels from CI with ES were approved as an alternative to the ones from HR (traditionally supplied to forging companies) to the manufacture of forged flanges of this type of steel. Moreover, in the analysis of forgings from CI without ES, the disapproval of various results also occurred, showing the effect of ES as an alternative to the properties of this type of forging.
4

Efeito da agitação eletromagnética nas propriedades de aços AISI 1025 forjados a quente

Yurgel, Charles Chemale January 2014 (has links)
Este trabalho tem como objetivo avaliar o efeito do processo de agitação eletromagnética (AE) utilizado no lingotamento contínuo (LC) e nas propriedades mecânicas e metalúrgicas dos aços ABNT 1025 (com adições de manganês e silício) forjados a quente, para a confecção de flanges de tubulações industriais. As matériasprimas fornecidas foram caracterizadas através de composição química e macrografia. Compararam-se os aços provenientes de três condições de fornecimento: 1º) LC sem AE somado à laminação a quente (LQ); 2º) LC com AE; e 3º) LC sem AE. Em seguida, foram extraídos billets de seção quadrada de 120mmx120mmx58mm das três condições citadas para subsequentes forjamentos a quente e fabricação de flanges. Assim, são mostrados os resultados das propriedades obtidas e a comparação com a norma de validação ASTM A 105 (especificação padrão para forjados de aço carbono para aplicação em tubulações) utilizada nesse tipo de forjado. Através da norma, foram verificados os requisitos químicos e ensaios de tração e de dureza. As propriedades foram, também, analisadas através de metalografias (macro e micro), ensaios de impacto e ensaios não destrutivos de líquidos penetrantes. Através da teoria elementar da plasticidade, os valores requeridos para a força de forjamento da peça em estudo, durante o processo de forjamento a quente, foram estimados em caráter formativo e didático. De acordo com os fundamentos teóricos observados na revisão bibliográfica e com os resultados práticos obtidos, constatou-se a aprovação dos aços provenientes do LC com AE como alternativa aos provenientes da LQ (tradicionalmente fornecidos às forjarias) para a confecção de flanges forjados desse tipo de aço. Na análise dos forjados provenientes do LC sem AE também ocorreu a reprovação de diversos resultados, mostrando o efeito da AE como alternativa para as propriedades desse tipo de forjado. / The objective of this work is to evaluate the effect of the process of electromagnetic stirring (ES) used in continuous ingot (CI) in the mechanical and metallurgic properties of 1025 ABNT hot forged steels (with the addition of manganese and silicon) for the manufacture of flanges of industrial pipes. At first, the supplied raw materials were characterized trough chemical compound and macrograph. Then, steels from the following three supplying conditions [ 1º) CI without ES plus hot rolling (HR); 2º) CI with ES; and 3º) CI without ES] were compared. Afterwards, billets were extracted from a square section measuring 120mmx120mmx58mm, from the three previous conditions, to be hot forged and to the manufacture of connection flanges. Thus, the results from these properties and the comparison with the validation norm ASTM A 105 (standard specification for steel-carbon forgings for the application in pipes) for this type of forged are shown. Through this norm, chemical requirements, tension and hardness tests were verified. The properties were also analyzed through metallographies (macro and micro), impact tests and non-destructive tests of penetrating liquids. Through the elementary plasticity theory, the demanded values for the forging force of the studied piece, during the hot forging process, were estimated as didactic and formative natures. According to the theoretical substances observed in the bibliography and to these practical results, the steels from CI with ES were approved as an alternative to the ones from HR (traditionally supplied to forging companies) to the manufacture of forged flanges of this type of steel. Moreover, in the analysis of forgings from CI without ES, the disapproval of various results also occurred, showing the effect of ES as an alternative to the properties of this type of forging.
5

Linear Electromagnetic Stirrer

Milind, * 03 1900 (has links) (PDF)
No description available.
6

Efeito da agitação eletromagnética nas propriedades de aços AISI 1025 forjados a quente

Yurgel, Charles Chemale January 2014 (has links)
Este trabalho tem como objetivo avaliar o efeito do processo de agitação eletromagnética (AE) utilizado no lingotamento contínuo (LC) e nas propriedades mecânicas e metalúrgicas dos aços ABNT 1025 (com adições de manganês e silício) forjados a quente, para a confecção de flanges de tubulações industriais. As matériasprimas fornecidas foram caracterizadas através de composição química e macrografia. Compararam-se os aços provenientes de três condições de fornecimento: 1º) LC sem AE somado à laminação a quente (LQ); 2º) LC com AE; e 3º) LC sem AE. Em seguida, foram extraídos billets de seção quadrada de 120mmx120mmx58mm das três condições citadas para subsequentes forjamentos a quente e fabricação de flanges. Assim, são mostrados os resultados das propriedades obtidas e a comparação com a norma de validação ASTM A 105 (especificação padrão para forjados de aço carbono para aplicação em tubulações) utilizada nesse tipo de forjado. Através da norma, foram verificados os requisitos químicos e ensaios de tração e de dureza. As propriedades foram, também, analisadas através de metalografias (macro e micro), ensaios de impacto e ensaios não destrutivos de líquidos penetrantes. Através da teoria elementar da plasticidade, os valores requeridos para a força de forjamento da peça em estudo, durante o processo de forjamento a quente, foram estimados em caráter formativo e didático. De acordo com os fundamentos teóricos observados na revisão bibliográfica e com os resultados práticos obtidos, constatou-se a aprovação dos aços provenientes do LC com AE como alternativa aos provenientes da LQ (tradicionalmente fornecidos às forjarias) para a confecção de flanges forjados desse tipo de aço. Na análise dos forjados provenientes do LC sem AE também ocorreu a reprovação de diversos resultados, mostrando o efeito da AE como alternativa para as propriedades desse tipo de forjado. / The objective of this work is to evaluate the effect of the process of electromagnetic stirring (ES) used in continuous ingot (CI) in the mechanical and metallurgic properties of 1025 ABNT hot forged steels (with the addition of manganese and silicon) for the manufacture of flanges of industrial pipes. At first, the supplied raw materials were characterized trough chemical compound and macrograph. Then, steels from the following three supplying conditions [ 1º) CI without ES plus hot rolling (HR); 2º) CI with ES; and 3º) CI without ES] were compared. Afterwards, billets were extracted from a square section measuring 120mmx120mmx58mm, from the three previous conditions, to be hot forged and to the manufacture of connection flanges. Thus, the results from these properties and the comparison with the validation norm ASTM A 105 (standard specification for steel-carbon forgings for the application in pipes) for this type of forged are shown. Through this norm, chemical requirements, tension and hardness tests were verified. The properties were also analyzed through metallographies (macro and micro), impact tests and non-destructive tests of penetrating liquids. Through the elementary plasticity theory, the demanded values for the forging force of the studied piece, during the hot forging process, were estimated as didactic and formative natures. According to the theoretical substances observed in the bibliography and to these practical results, the steels from CI with ES were approved as an alternative to the ones from HR (traditionally supplied to forging companies) to the manufacture of forged flanges of this type of steel. Moreover, in the analysis of forgings from CI without ES, the disapproval of various results also occurred, showing the effect of ES as an alternative to the properties of this type of forging.
7

Projeto e construção de equipamento eletromagnetico para a produção de materia-prima para tixoconformação de ligas metalicas / Design and development of an electromagnectic equipment for the production of raw material for thixoforming of metal alIoy

Bubenik, Rubens Luiz 18 May 1998 (has links)
Orientador: Maria Helena Robert / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-23T20:58:55Z (GMT). No. of bitstreams: 1 Bubenik_RubensLuiz_M.pdf: 9820006 bytes, checksum: 74e4259834492d5dafe6eb6b382dbc4f (MD5) Previous issue date: 1998 / Resumo: Este trabalho trata do projeto e construção de um equipamento capaz de alterar a morfologia da fase primária de ligas metálicas em solidificação, diferenciando-a das estruturas dendríticas produzidas na solidificação convencional. Neste processo uma força externa provoca movimentos no metal líquido com objetivo de alterar a morfologia de crescimento do sólido, resultando em estruturas pré-reofundidas. No equipamento idealizado é utilizado um campo magnético girante para fornecer a força necessária ao movimento. O trabalho envolve projeto, construção e montagem de circuitos elétricos, circuitos eletrônicos e dispositivos mecânicos, bem como testes de eficiência do equipamento na produção de estruturas pré-reofundidas da liga AA 2011. Para testes foram variados o tempo de agitação do líquido (230 e 300 s), e o modo de agitação (normal e com reversão), sendo mantidas constantes a potência (1040 W) e a taxa de resmamento ('20 GRAUS¿/min.). Os resultados obtidos atestam a eficiência do equipamento na obtenção de lingotes com macroestrutura equiaxial refinada, homogênea em todo o seu volume, e microestrutura apresentando dendritas fragmentadas, com fator de forma de 2 a 3 para todas as condições analisadas. Estes valores de fator de forma podem ser considerados excelentes para materiais a serem utilizados como matéria prima para a conformação no estado pastoso reofundido / Abstract: This work relates the design and development of an equipment capable of modifying the morphology of primary phase during solidification of metal alloys, differentiating such structures ftom those dendritic obtained in conventional solidification. In this process turbulence is imposed to the liquid metal by means of a external force with the purpose of modifying the morphology of the growing solid, resulting in pre-rheocast structures. In the idealized equipment a rotating magnetic field is used to provide the necessary stirring in the Liquid. This work involves design, building and assembling of the equipment, as well as preliminarytests to analyse the efficiency of the equipment to produce ingots of the alloy AA 2011 with pre-rheocast structures. Different stirring times (230 and 330 s) and type of movement (normal or reverted) were utilized in the tests, while power and freezing rate in the material were kept constant (1040 W and '20 DEGREES¿/min., respectively). Results showed the efficiency of the designed equipment in the production of ingots with fine, equiaxial and homogeneous macrostructure and microstructures presenting highly ftagmented dendrites, with values of morphology index varying ftom 2 to 3 for all operational conditions tested. Those values of morphology index can be considered excellent for a material to be utilized as raw material for forming in the semi-solid state or thixoforming / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
8

Investigation of Electric Arc Furnace Chemical Reactions and stirring effect

DENG, LEI January 2012 (has links)
Chemical energy plays a big role in the process of modern Electric Arc Furnace (EAF). The objective of this study is to compare the results of chemical reaction enthalpies calculated by four different methods. In general, the “PERRY-NIST-JANAF method” is used to calculate the chemical energies. However, this method heavily depend on heat capacities of the substances which have to be deduced from  “Perry’s Chemical Engineers’ Handbook” and “NIST-JANAF Thermochemical Tables”, even the calculation process is complicated. Then, some other methods are introduced: Total enthalpy method, HT (High Temperature) enthalpy method and Atomic energy method. In this thesis, the above four methods have been used to calculate the enthalpies of chemical reactions in EAF process. Both of “Total enthalpy method” and “HT enthalpy method” are not complicated, but some basic data are not available. The calculation for chemical reaction enthalpies cannot be completely made by these two methods. “Atomic energy method” is more complicated than “Total enthalpy method” and “HT enthalpy method”, even almost all data are available, but some results of these methods are far from those of the other three methods’. The results show that values of enthalpies obtained by “PERRY-NIST-JANAF method” are more reasonable, though the calculation process is more complicated. In this study, it is also discussed two influencing factors on EAF process: electric power and electromagnetic stirring (EMS).
9

Experimental Investigation Of Rheocasting Using Linear Electromagnetic Stirring

Pramod kumar, * 01 1900 (has links)
In several applications of casting, dendritic microstructure is not desirable as it results in poor mechanical properties. Enhancing fluid flow in the mushy zone by stirring is one of the means to suppress this dendritic growth. Strong fluid flow detaches the dendrites formed at the solid-liquid interface and carries them into the mould to form slurry. When this slurry solidifies, the microstructure is characterized by globular, non-dendritic primary phase particles, separated and enclosed by a near-eutectic lower-melting secondary phase. This property represents a great potential for further processing in semisolid forming (SSF) by various techniques such as pressure die casting and forging. Among all currently available methods, linear electromagnetic (EM) stirring is considered as one of the most suitable routes for large scale production of semisolid feed stock. One of the biggest advantages of EM stirring is that the stirring intensity and direction can be modulated externally and in a non-intrusive manner. With this viewpoint, the primary objective of the present research is to investigate rheocasting using linear electromagnetic stirring. A systematic development of a linear electromagnetic stirrer (LEMS) is the subject of the first part of the thesis. The LEMS consists of a set of six primary coils displaced in space. These coils are excited by a three-phase power supply to produce an axially travelling magnetic field. The metal to be stirred is placed in the annular space of the stirrer. The travelling field induces secondary current in the molten metal. The current and magnetic fields interact to generate a net mechanical force in the metal, commonly termed as the Lorentz force. The molten metal is stirred under the influence of this force. Two prototype stirrers, one for low melting alloys and the other for aluminium alloys are developed. The stirrers are characterized by measuring forces on low melting point alloy and on solid aluminum cylinders placed inside the annular space of the stirrer. As an outcome of these tests, a non-intrusive method of detecting stirring of liquid metal is developed. The development of a rheocasting mould for the LEMS forms the second part of the work presented in the thesis. The mould design and cooling arrangement are such that solidification in the mould is primarily unidirectional. Heat from the solidifying metal is extracted at the bottom of the mould, so that the axisymmetric EM stirring effectively shears the dendrites formed at the solid-liquid interface. The outer surface of the mould is cooled with water or air exiting from 64 jets, each of 4 mm diameter. Such an arrangement provides a high heat transfer coefficient and a wide range of cooling rate in the metal ranging from 0.01 to 10 K/s. Temperature is measured at various depths in the solidifying melt and at other key locations in the mould to assess the various heat transfer mechanisms. The results from the rheocasting experiments using the above mould and LEMS are presented in the third and final part of the thesis. Such studies are required for understanding the solidification process in presence of electromagnetic stirring and for highlighting the important issues connecting solidification, fluid flow, dendrite fragmentation and the resulting microstructure. A series of experiments are performed with A356 (Al-7Si-0.3Mg) alloy. Experiments are conducted with various combinations of operating parameters, and the resulting microstructures and cooling curves at various locations are examined. The key process parameters are stirring current, cooling rate, pouring temperature, and stirring current frequency. The parametric studies also include the case without EM stirring in which liquid aluminium is poured into the rheocast mould without powering the LEMS. It is found that stirring at high currents produces non-dendritic microstructures at all locations of the billet. For lower currents, however, dendritic microstructures are observed in regions outside the zone of active stirring. Stirring also enhances heat loss from the exposed top surface, leading to solid front advancement from the top as well. Without EM stirring, microstructures are found to be dendritic everywhere. The percentage of primary α-Al phase and its number density are found to increase with stirring intensity. With a decrease in cooling rate with air as the coolant, the average grain size of primary α-Al phase increases. Excitation frequency is found to be an important parameter, with lower frequencies generating a more uniform force field distribution, and higher frequencies enhancing induction heating. At higher frequencies, the effect of higher induction heating results in the formation of larger and coarser primary phase grains. This phenomenon has led to the development of a one-step process for rheocasting and heat treatment of billets.
10

Studies On Transport Phenomena During Solidification In Presence Of Electromagnetic Stirring

Barman, Nilkanta 12 1900 (has links)
In several applications of casting, dendritic microstructure is not desirable as it results in poor mechanical properties. Enhancing the fluid flow in the mushy zone by stirring is one of the means to suppress this dendritic growth. The strong fluid flow detaches the dendrites from the solid-liquid interface and carries them into the mold to form slurry. The detached dendrites coarsen in the slurry and form into rosette or globular particles based on processing conditions. This slurry offers less resistance to flow even at a high solid fraction and easily flow into the die-cavity. The above principle is the basis of a new manufacturing technology called “semi-sold forming” (SSF), in which metal alloys are cast in the semi-solid state. This technique has several advantages over other existing commercial casting processes, such as reduction of macrosegregation, reduction of porosity and low forming efforts. A major challenge existing in semisolid manufacturing is the production of metallic slurry in a consistent manner. The main difficulty arises because of the presence of a wide range of process parameters affecting the quality of the final product. An established method of producing slurry is by stirring the alloy using an electromagnetic stirrer. From an elaborate review of literature, it is apparent that solidification in presence of electromagnetic stirring involves a wide range of shear and cooling rates variation. However, the CFD models found in the literature are generally not based on accurate rheological properties, which are known to be functions of the relevant process parameters. Hence, there is a clear need for a comprehensive numerical model for such a solidification process, involving accurate rheological data for the semisolid slurry subjected to a range of processing conditions. The objective of the present work is to develop a numerical model for studying the transport phenomena during solidification with linear electromagnetic stirring. The study is presented in the context of a billet making process in a cylindrical mould using linear electromagnetic stirring. The mould consists of two parts: the upper part of the mould is surrounded by a linear electromagnetic stirrer forming the zone of active stirring, and the lower part of the mould is used to cool the liquid metal. The material chosen for the study is Al-7.32%Si (A356) alloy, commonly used for die casting applications. A complete numerical model will therefore have two major components: one dealing with rheological behavior of the semisolid slurry, and the other involving macroscopic modeling of the process using computational fluid dynamics (CFD) techniques. For the latter part of the model, determination of rheological behavior of the slurry is a pre-requisite. The rheological characteristics of the stirred slurry, as a function of shear rate and cooling rate, is determined experimentally using a concentric cylinder viscometer. Two different series of experiments are performed. In the first series, the liquid metal is cooled at a constant cooling rate and sheared with different shear rates to get the effect of shear rate on viscosity. In the second series of experiments, the liquid metal is cooled at different cooling rates and sheared at a constant shear rate to obtain the effect of cooling rate on viscosity. During all these experiments, the shear rate is calculated from the measured angular velocity of spindle using inductive position sensor; viscosity of the slurry is calculated based on the torque applied to the slurry and angular velocity of the spindle; and the solid fraction is calculated from measured temperature of the slurry based on Schiel equation. From these data, a constitutive relation for variable viscosity is established, which is subsequently used in a numerical model for simulating the transport phenomena associated with the solidification process. The numerical model uses a set of single-phase governing equations of mass, momentum, energy and species conservation. The set of governing equations is solved using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. The numerical simulation of this process also involves modeling of Lorentz force field. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution. First, studies are performed for a base case with a moderate stirring intensity of 250A primary current and 50 Hz frequency. It is found that the electromagnetic forces have maximum values near the mould periphery, which results in an ascending movement of the slurry near the mould periphery. Because of continuity, this slurry comes down along the axis of the mould. Stirring produces a strong fluid flow which results good mixing in the melt. Correspondingly, a homogenized temperature distribution is found in the domain. Because of strong stirring, the solid fraction in the slurry is found to be distributed almost uniformly. It is also found that fragmentation of dendrites increases solid fraction in the slurry with processing time. During processing, the continuous rejection of solute makes the liquid progressively solute enriched. It is predicted from the present study that the remaining liquid surrounding the primary solid phase finally solidifies with a near-eutectic composition, which is desirable from the point of view of semisolid casting. Correspondingly, a set of experiments are performed to validate the numerically predicted results. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlate well with the microstructures obtained through experiments at various locations, as observed in the numerical results. Subsequently the study is extended to predict the effect of process parameters such as stirring intensity and cooling rate on the distributions of solid fraction and solute in the domain. It is found, from the simulation, that the solidification process is significantly affected by stirring intensity. At increasing primary excitation current, the magnitude of Lorentz force increases and results in increase of slurry velocity. Correspondingly, the fragmentation of dendrites from the solid/liquid is more during solidification at higher stirring intensity, which increases the fraction of solid in the slurry to a high value. It is also found that the solute and fraction of solid in the liquid mixes well under stirring action. Thus, a near uniform distribution of solute and solid fraction is found in the domain. It is found that stirring at high currents produces high solid fraction in the liquid. Also, at very low cooling rate, the solid fraction in the liquid increases. The present study focuses on the model development and experimental validation for solidification with linear electromagnetic stirring for producing a rheocast billet. Further studies highlighting the effects of various process parameters on the thermal history and microstructure formation are also presented.

Page generated in 0.0983 seconds