• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3124
  • 868
  • 380
  • 300
  • 204
  • 132
  • 74
  • 48
  • 42
  • 29
  • 28
  • 28
  • 28
  • 28
  • 28
  • Tagged with
  • 6965
  • 2408
  • 1313
  • 798
  • 711
  • 655
  • 630
  • 610
  • 610
  • 590
  • 574
  • 535
  • 514
  • 495
  • 482
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Approaches to mechanisms in fast atom bombardment mass spectrometry

Schurz, Helen H. 05 1900 (has links)
No description available.
412

Fabrication and DC characterization of single electron transistors at low temperature

Dubejsky, Gregory Stefan 02 August 2007 (has links)
The metallic single electron transistor (SET) has been shown to provide charge sensitivity on the order of 10-6 e/(Hz)1/2, when operated as a charge amplifier. This makes it an ideal candidate for low-noise measurement schemes, such as monitoring nano-mechanical oscillations, or reading out the charge state of a quantum bit. The SET operates by exploiting quantum tunneling across an ‘island’ between two insulating tunnel junctions, and can be modulated by a capacitively coupled gate electrode. A metallic SET has been fabricated and characterized at low frequencies. The device was fabricated on a silicon substrate coated with a bi-layer resist, using electron beam lithography. The Al-AlOx¬-Al tunnel junctions were created using double angle evaporation. Samples were tested near 300 mK in a custom helium-3 cryostat system. Results which characterize the SET parameters and conductance behaviour were obtained, in both the superconducting and normal states. This thesis contains a discussion of the fabrication procedures and dc measurement techniques required to produce and test a single electron transistor. Relevant background theory relating to SET operation and cryogenic laboratory techniques is presented. A brief discussion of proposed future experiments using a dual gate radio frequency SET as a more sensitive amplifier is introduced. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-08-01 14:07:55.427
413

Towards the Fabrication and Characterization of a Nanomechanical Electron Shuttle

Lucht, Benjamin 29 January 2010 (has links)
First proposed in the late 1990's, a nanomechanical electron shuttle is a device where an electrically isolated island moves a definite number of electrons between two leads, producing a current that is directly related to the number of electrons moved in a cycle and to the vibration frequency of the island. Since nanomechanical structures can have very well defined vibration frequencies, a device of this type is useful as, among other things, a current standard for metrology. The experimental shuttle implementations to date have had large island-lead spacings, which has limited their performance. The work presented here takes the first steps towards the fabrication of a nanomechanical electron shuttle using the process of electromigration to define very small lead-island gaps with conductivity on the order of the conductance quantum G_0=2e^2/h. These small gaps, coupled with the high vibration frequencies achievable with nanostructures, will allow investigation deeper into the realm of quantum effects. In this work, the fabrication steps for the creation of these devices were developed. Electromigration of a single junction was successfully achieved to the 10--100\,k\ohm range. The simultaneous and symmetric electromigration of two junctions, as required for the shuttle, has not yet been achieved. The development of a fast electromigration cut-off circuit, however, gives hope that double-breaking success will be achieved soon. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-01-28 23:01:15.735
414

Electron Correlation Energies in Atoms

McCarthy, Shane 09 February 2012 (has links)
No description available.
415

Comparison of Current Almond Pasteurization Methods and Electron Beam Irradiation as an Alternative

Cuervo Pliego, Mary 2011 December 1900 (has links)
Two outbreaks of salmonellosis were linked to the consumption of raw California almonds in 2001 and 2004. Current federal regulations mandate that all almonds grown in California are to be treated with a process that results in a 4-log reduction of Salmonella. Since four out of the five approved technologies to pasteurize almonds rely on the application of heat to control Salmonella, the evaluation of alternative technologies against heat resistant Salmonella Senftenberg was imminent. In this study, almonds that were inoculated with S. Enteritidis PT 30 and S. Senftenberg, were treated with electron beam irradiation (e-beam), blanching and oil roasting. The thermal death time (D-value) for S. Enteritidis PT 30 when treated with e-beam was 0.90 kGy, 15 s when subjected to blanching at 88 degrees C, and 13 s when treated with oil at 127 degrees C. Irradiation and thermal resistance of S. Senftenberg was not significantly different (P > 0.05) from S. Enteritidis PT 30. The commercial application of e-beam as a pathogen intervention was assessed through Monte Carlo simulations (MCS) and experimental measurements. The sensory characteristics of almonds commercially treated by e-beam, blanching and roasting were assessed by a consumer panel. Irradiated and blanched almonds did not differ in consumer overall like (P > 0.05). Bitterness and rancidity attributes of irradiated almonds were between a "dislike slightly" and "dislike moderately", whereas blanched and roasted almonds were between "neither like nor dislike" and "like slightly". Almonds commercially irradiated, blanched and roasted were subjected to an accelerated shelf-life test (ASLT) evaluating percentage free fatty acids, peroxide value, and 2-thiobarbituric acid reactive substances (TBARs). No clear differences between treatments were observed at any given point in time in any of the chemical tests. A gas chromatography-mass-spectrometry-olfactometry (MDGC-MS-O) technology was used to compare full aroma and flavor profiles from raw and e-beam irradiated almonds. Differences in the aroma/odor profile and the taste analysis revealed that the difference between raw and irradiated almonds is extremely subtle. In conclusion, e-beam may be a feasible technology to control Salmonella in almonds if used at low doses, as a part of a series of interventions.
416

Magnetic quantum oscillations in organic metals based on the molecule bis(ethylenedithio)tetrathiafulvalene

Caulfield, Jason M. January 1994 (has links)
ET charge transfer salts (where ET is <en>bis(ethylenedithio)- tetrathiafulvalene) have relatively simple quasi two-dimensional Fermi surface topologies, making them ideal for the study of the relationship between bandstructure and properties such as superconductivity. Experimental studies of the Fermi surface areas and associated effective masses have been carried out using the Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) effects. By comparing the experimental results to theoretical bandstructure calculations the strength of many body interactions has been estimated. High pressure magnetotransport experiments have been carried out on the superconductor κ-ET<sub>2</sub>Cu(NCS)<sub>2</sub>. The observation of SdH and magnetic breakdown oscillations has allowed the pressure dependences of the Fermi surface topology and effective masses to be deduced and compared with simultaneous measurements of the superconducting critical temperature. The data strongly suggest that the enhancement of the effective mass and the superconducting behaviour are directly connected. The results are compared with several current theories of superconductivity. The dHvA effect has been used to probe the superconducting mixed state of κ-ET<sub>2</sub>Cu(NCS)<sub>2</sub>. A recent model of the superconducting mixed state is applied to the experimental data in an attempt to determine the value and symmetry of the superconducting energy gap. SdH measurements up to 30 T have been used to study spin densitywave formation in α-ET<sub>2</sub>KHg(SCN)<sub>4</sub>, and the reasons why a very slight increase of the unit cell volume (i.e. replacing the K in α-ET<sub>2</sub>KHg(SCN)<sub>4</sub> by NH<sub>4</sub>) stabilises a superconducting state. Galvanomagnetic techniques have been used to measure the quasi onedimensional Fermi surface orientation below the spin-density-wave transition, and to accurately determine the shape of the quasi twodimensional Fermi surface above it. The application of pressure has been used to gradually reduce the onset temperature of a metal-insulator transition and to eventually stabilise a superconducting state in ET<sub>3</sub>Cl<sub>2</sub>2H<sub>2</sub>O. The bandstructure of ET<sub>3</sub>C1<sub>2</sub>2H<sub>2</sub>O has been investigated using the SdH effect whilst hydrostatic pressure has been used to pass through the superconducting part of the phase diagram.
417

Coincidence studies of electron scattering from atoms in thin solids

McBrinn, D. P. January 1979 (has links)
No description available.
418

Measurements of linear and circular birefringence in metals by femtosecond optical pump-probe spectroscopy

Wilks, Ralph January 2002 (has links)
No description available.
419

Magneto-optical investigations of two-dimensional electron systems in GaAs-Al←xGa←1←-←xAs single heterojunctions

Kerridge, Gregg Charles January 1999 (has links)
No description available.
420

Nitric oxide in sepsis

Davies, Nathan Alun January 1999 (has links)
No description available.

Page generated in 0.063 seconds