Spelling suggestions: "subject:"alectron teams bindustrial applications"" "subject:"alectron teams 0industrial applications""
1 |
Synchrotron white beam topographic study of damage accompanying laser drillingChung, Yong Ho 05 1900 (has links)
No description available.
|
2 |
Characterization of Ti-6Al-4V Produced Via Electron Beam Additive ManufacturingHayes, Brian J. 12 1900 (has links)
In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron beam additive manufacturing (EBAM). The Sciaky EBAM method combines a high-powered electron beam, weld-wire feedstock, and a large build chamber, enabling the production of large structural components. In order to gain wide acceptance of EBAM of Ti-6Al-4V as a viable manufacturing method, it is important to understand broadly the microstructural features that are present in large-scale depositions, including specifically: the morphology, distribution and texture of the phases present. To achieve such an understanding, stereological methods were used to populate a database quantifying key microstructural features in Ti-6Al-4V including volume fraction of phases, a lath width, colony scale factor, and volume fraction of basket weave type microstructure. Microstructural features unique to AM, such as elongated grains and banded structures, were also characterized. Hardness and tensile testing were conducted and the results were related to the microstructural morphology and sample orientation. Lastly, fractured surfaces and defects were investigated. The results of these activities provide insight into the process-structure-properties relationships found in EBAM processed Ti-6Al-4V.
|
3 |
Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation.Vemuri, Prasanna 05 1900 (has links)
Cubic boron nitride (cBN) synthesis has gained lot of interest during the past decade as it offers outstanding physical and chemical properties like high hardness, high wear resistance, and chemical inertness. Despite of their excellent properties, every application of cBN is hindered by high compressive stresses and poor adhesion. The cost of equipment is also high in almost all the techniques used so far. This thesis deals with the synthesis of cubic phase of boron nitride on Si (100) wafers using electron beam evaporator, a low cost equipment that is capable of depositing films with reduced stresses. Using this process, need of ion beam employed in ion beam assisted processes can be eliminated thus reducing the surface damage and enhancing the film adhesion. Four sets of samples have been deposited by varying substrate temperature and the deposition time. scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) techniques have been used to determine the structure and composition of the films deposited. X-ray diffraction (XRD) was performed on one of the samples to determine the thickness of the film deposited for the given deposition rate. Several samples showed dendrites being formed as a stage of film formation. It was found that deposition at substrate temperature of 400oC and for a period of one hour yielded high quality cubic boron nitride films.
|
4 |
Electron beam techniques for testing and restructuring of wafer-scale integrated circuitsShaver, David Carl. January 1981 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 1981 / Includes bibliographical references. / by David Carl Shaver. / Ph. D. / Ph. D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
|
Page generated in 0.1144 seconds