Spelling suggestions: "subject:"alectron diffraction"" "subject:"dlectron diffraction""
91 |
Structural and Electronic Flexibility in Hydrides of Zintl Phases with Tetrel–Hydrogen and Tetrel–Tetrel BondsAuer, Henry, Schlegel, Robert, Oeckler, Oliver, Kohlmann, Holger 28 February 2019 (has links)
The hydrogenation of Zintl phases enables the formation of new structural entities with main group elementhydrogen bonds in the solid state. The hydrogenation of SrSi, BaSi and BaGe yields the hydrides SrSiH5/3-x, BaSiH5/3-x and BaGeH5/3-x. The crystal structures show a six-fold superstructure compared to the parent Zintl phase and were solved by a combination of X-ray, neutron and electron diffraction and the aid of DFT calculations. Layers of connected HSr4 (HBa4) tetrahedra containing hydride ions alternate with layers of infinite single- and double-chain polyanions, where hydrogen atoms are covalently bound to silicon and germanium. The idealized formulae AeTtH5/3 (Ae = alkaline earth, Tt = tetrel) can be rationalized with the Zintl-Klemm concept according to (Ae2+)3(TtH-)(Tt2H2-)(H-)3, where all Tt atoms are three-binding. The non-stoichiometry (SrSiH5/3-x, x = 0.17(2); BaGeH5/3-x, x = 0.10(3)) can be explained by additional π-bonding of the Tt chains.
|
92 |
Growth and Scanning Tunneling Microscopy Studies of Novel Trench-Like Formation and Relation to Manganese Induced Structures on w-GaN (000-1)Alhashem, Zakia H. 24 August 2015 (has links)
No description available.
|
93 |
Physical Properties of Magnetic Macromolecule-Metal and Macromolecule-Metal Oxide Nanoparticle ComplexesZalich, Michael Andrew 12 May 2005 (has links)
Magnetic nanoparticles are of considerable interest owing to their potential applications in biotechnology and the magnetic recording industry. Iron oxides have received much attention owing to their oxidative stability and biocompatibility; however, other transition metals and their alloys are also under investigation. Cobalt has one of the largest magnetic susceptibilities of these materials, but it readily oxidizes upon exposure to air resulting in antiferromagnetic oxide. Hence, coating cobalt nanoparticles with an oxygen-impermeable sheath would confer numerous benefits. Cobalt nanoparticles were prepared by the thermolysis of dicobalt octacarbonyl in two block copolymer micellar systems, wherein the copolymers were precursors to graphite or silica. Subsequent heat treatment of the samples at 600-700oC was conducted to condense the polymer coating around the cobalt nanoparticles and form oxygen impervious graphite or silica sheaths.
Magnetic and structural characterization of these novel materials afforded pertinent information about their physical properties. Magnetic susceptometry indicated that the graphite coated cobalt nanoparticles resisted oxidation for over one year. The silica coated cobalt nanoparticles had high saturated specific magnetic moments, but the coatings were brittle and grinding the particles resulted in oxidation over time. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and energy-filtered TEM (EFTEM) were employed to study particle size and structural differences of the cobalt nanoparticles before and after heat treatment. The mean particle size and size distribution increased for the graphite coated cobalt particles, due to particle sintering at 700oC. In the silica coated cobalt nanoparticle system, the mean particle size increased when the sample was heat-treated at 600oC leading to a bimodal distribution. This bimodal distribution was explained by a fraction of the particles sintering, while others remained discrete. When the silica system was heat treated at 700oC, the particle size and size distribution remained similar to those of the pre-heat-treated sample, indicating that no sintering had taken place. The rapid pyrolysis of the polymer at 700oC may serve to lock the cobalt nanoparticles into a silica matrix, thus preventing them from coming into contact with one another and sintering. Several diffraction techniques (selected area electron diffraction (SAD), nano-beam electron diffraction (NBD) and x-ray diffraction (XRD)) were used to probe the crystal structure of graphite and silica coated cobalt nanoparticles, which was determined to be predominantly face-centered cubic.
Anisotropic magnetic nanoparticles (nanorods) have an increased magnetophoretic mobility over spherical magnetic nanoparticles with the same equatorial radius. This property makes them attractive candidates for in vivo biological applications. Anisotropic mixed ferrite nanoparticles were coated with a biocompatible hydrophilic block copolymer to render them dispersible in aqueous media. Polymer coated mixed ferrite particles exhibited magnetic properties similar to that of pure magnetite, as the total level of other transition metals in the nanoparticulate system was less than 5%. Electron energy loss spectroscopy (EELS) and (EFTEM) confirmed that the dominant elements in the mixed ferrite nanoparticles were iron and oxygen. Furthermore, HRTEM, SAD and XRD analyses indicated that the crystal structure for the mixed ferrite nanoparticles was inverse spinel. X-ray diffraction peaks at low angles for the coated mixed ferrite rods corresponded to poly(ethylene oxide) peaks, suggesting that the block copolymer employed as a dispersant was associated with the particles. / Ph. D.
|
94 |
Precession Electron Diffraction Assisted Characterization of Deformation in α and α+β Titanium AlloysLiu, Yue (Focused ion beam microscope engineer) 08 1900 (has links)
Ultra-fine grained materials with sub-micrometer grain size exhibit superior mechanical properties when compared with conventional fine-grained material as well as coarse-grained materials. Severe plastic deformation (SPD) techniques have been shown to be an effective way to modify the microstructure in order to improve the mechanical properties of the material. Crystalline materials require dislocations to accommodate plastic strain gradients and maintain lattice continuity. The lattice curvature exists due to the net dislocation that left behind in material during deformation. The characterization of such defects is important to understand deformation accumulation and the resulting mechanical properties of such materials. However, traditional techniques are limited. For example, the spatial resolution of EBSD is insufficient to study materials processed via SPD, while high dislocation densities make interpretations difficult using conventional diffraction contrast techniques in the TEM. A new technique, precession electron diffraction (PED) has gained recognition in the TEM community to solve the local crystallography, including both phase and orientation, of nanocrystalline structures under quasi-kinematical conditions. With the assistant of precession electron diffraction coupled ASTARÔ, the structure evolution of equal channel angular pressing processed commercial pure titanium is studied; this technique is also extended to two-phase titanium alloy (Ti-5553) to investigate the existence of anisotropic deformation behavior of the constituent alpha and beta phases.
|
95 |
Ultrafast structural dynamics in 4Hb-TaSe2 observed by femtosecond electron diffractionErasmus, Nicolas 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: In this thesis the structural dynamics, upon photo-excitation, of the charge-densitywave
(CDW) material 4Hb-TaSe2 is investigated on the time-scale of atomic motion
and simultaneously on the spatial-scale of atomic dimensions.
CDW materials have been of interest since their discovery in the 1970’s because of their
remarkable non-linear and anisotropic electrical properties, gigantic dielectric constants,
unusual elastic properties and rich dynamical behaviour. Some of these exotic
properties were extensively investigated in thermal equilibrium soon after their discovery
but only recently have ultrafast techniques like femtosecond spectroscopy become
available to study their out-of-equilibrium behaviour on the time-scale of atomic
motion. By studying their behaviour on this time-scale a more in-depth understanding
of their macroscopic properties can be gained. However, to do investigations on the
atomic time-scale and simultaneously directly observe the evolution of the atomic arrangements
is another challenge. One approach is through the previously mentioned
technique of femtosecond pump-probe spectroscopy but converting the usual ultrashort
optical probing source to an ultrashort electron or x-ray source that can diffract
off the sample and reveal structural detail on the atomic level. Here, the femto-to-picosecond out-of-equilibrium behaviour upon photo-excitation in
4Hb-TaSe2 is investigated using an ultrashort electron probe source. Two variations
of using an electron probe source are used: conventional scanning Femtosecond Electron
Diffraction (FED) and a new approach namely Femtosecond Streaked Electron
Diffraction (FSED). The more established FED technique, based on femtosecond pumpprobe
spectroscopy, is used as the major investigating tool while the FSED technique,
based on ultrafast streak camera technology, is an attempt at broadening the scope of
available techniques to study structural dynamics in crystalline material on the subpicosecond
time-scale.
With these two techniques, the structural dynamics during the phase transition from
the commensurate- to incommensurate-CDW phase in 4Hb-TaSe2 is observed through
diffraction patterns with a temporal resolution of under 500 fs. The study reveals
strong coupling between the electronic and lattice systems of the material and several
time-constants of under and above a picosecond are extracted from the data. Using
these time-constants, the structural evolution during the phase transition is better understood
and with the newly gained knowledge, a model of all the processes involved
after photo-excitation is proposed. / AFRIKAANSE OPSOMMING: In hierdie tesis word die strukturele dinamika van die lading-digtheid-golf (LDG) materiaal
4Hb-TaSe2 ondersoek op die tydskaal van atomiese bewegings en gelyktydig op
die ruimtelikeskaal van atomiese dimensies.
LDG materie is al van belang sedert hul ontdekking in die 1970’s as gevolg van hul
merkwaardige nie-lineêre en anisotrope elektriese eienskappe, reuse diëlektriese konstantes,
ongewone elastiese eienskappe en ryk dinamiese gedrag. Sommige van hierdie
eksotiese eienskappe is omvattend ondersoek in termiese ewewig kort na hul ontdekking,
maar eers onlangs is dit moontlik deur middle van ultravinnige tegnieke
soos femtosekonde spektroskopie om hulle uit-ewewigs gedrag te bestudeer op die
tydskaal van atomiese beweging. Deur die gedrag op hierdie tydskaal te bestudeer
kan ’n meer insiggewende begrip van hul makroskopiese eienskappe verkry word.
Om ondersoeke in te stel op die atomiese tydskaal en gelyktydig direk die evolusie
van die atoom posisie te waarneem is egter ’n moeilike taak. Een benadering is deur
middle van femtosekonde “pump-probe” spektroskopie maar dan die gewone optiese
“probe” puls om te skakel na ’n electron of x-straal puls wat van die materiaal kan
diffrak en dus strukturele inligting op die atomiese vlak kan onthul. Hier word die femto-tot-pico sekonde uit-ewewig gedrag in 4Hb-TaSe2 ondersoek met
behulp van elektron pulse. Twee variasies van die gebruik van ’n elektron bron word
gebruik: konvensionele “Femtosecond Electron Diffraction” (FED) en ’n nuwe benadering,
naamlik, “Femtosecond Streaked Electron Diffraction” (FSED). Die meer gevestigde
FED tegniek, wat gebaseer is op femtosekonde “pump-probe” spektroskopie,
word gebruik as die hoof ondersoek metode terwyl die FSED tegniek, wat gebaseer is
op die ultra vinnige “streak camera” tegnologie, ’n poging is om beskikbare tegnieke
uit te brei wat gebruik kan word om strukturele dinamika in materie te bestudeer op
die sub-picosekonde tydskaal.
Met behulp van hierdie twee tegnieke, word die strukturele dinamika tydens die fase
oorgang van die ooreenkomstige tot nie-ooreenkomstige LDG fase in 4Hb-TaSe2 deur
diffraksie patrone met ’n tydresolusie van minder as 500 fs waargeneem. Die studie
toon ’n sterk korrelasie tussen die elektroniese sisteem en kristalrooster. Verskeie
tydkonstantes van onder en bo ’n picosekonde kon ook uit die data onttrek word en
gebruik word om die strukturele veranderinge beter te verstaan. Hierdie nuwe kennis
het ons in staat gestel om ’n model van al die betrokke prosesse voor te stel.
|
96 |
Ultrafast electron diffraction on the charge density wave compound 4Hb-TaSe2Boshoff, Ilana 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Ultrafast electron diffraction is a powerful method to study atomic movement in crystals on sub-picosecond
timescales. This thesis consists of three parts. In part one the ultrafast electron diffraction machine is
described, followed by improvements that were made and techniques that were developed in order to bring
the system to state of the art level and enable the acquisition of suffcient data to obtain information on the
structural dynamics in crystals. The second part contains a description of the sample which was studied
in our fi rst time-resolved measurements, the transition-metal dichalcogenide 4Hb-TaSe2. This particular
crystal is an example of a strongly coupled electronic system which develops a charge density wave (CDW)
accompanied by a periodic lattice distortion (PLD). An overview of the formation of electron diffraction
patterns and what can be learned from them are also given, followed by the results of the ultrafast
electron diffraction experiments done with 4Hb-TaSe2. Part three describes an alternative source to study
dynamics in crystalline samples, namely laser plasma-based ultrafast X-ray diffraction.
The ultrafast electron diffraction group functions as a unit, but my tasks ranged from sample preparation
and characterisation of the electron beam to the setting up and execution of experiments. I was
involved in analysing the data and contributed small parts to the data analysis software. / AFRIKAANSE OPSOMMING: Ultravinnige elektron diffraksie is a metode om die beweging van atome in kristalle op sub-pikosekonde
tydskale te bestudeer. Hierdie tesis bestaan uit drie dele. In deel een van die tesis word die ultravinnige
elektron diffraksie masjien beskryf, gevolg deur verbeteringe wat aangebring is en tegnieke wat ontwikkel
is om die sisteem tot op 'n wêreldklas vlak te bring waar die insameling van genoegsame data om inligting
oor die strukturele dinamika in kristalle te bekom, moontlik is. Die tweede deel bevat 'n beskrywing
van die monster wat in ons eerste tydopgeloste eksperimente gebruik is, naamlik die oorgangsmetaaldichalkogenied
4Hb-TaSe2. Hierdie kristal is 'n voorbeeld van 'n sterk gekoppelde elektroniese sisteem
wat 'n ladingsdigtheid-golf en 'n gepaardgaande periodiese versteuring van die kristalrooster ontwikkel. 'n
Oorsig van die formasie van elektron diffraksiepatrone en wat ons daaruit kan leer word ook gegee. Daarna
word die resultate van die ultravinnige elektron diffraksie eksperimente wat op 4Hb-TaSe2uitgevoer is
beskryf en bespreek. In deel drie word 'n alternatiewe metode om die dinamika in kristalmonsters te
bestudeer, naamlik laser plasma-gebaseerde ultravinnige X-straal diffraksie, beskryf.
Die ultravinnige elektron diffraksie groep funksioneer as 'n eenheid, maar my verantwoordelikhede het
gestrek van die voorbereiding van monsters en die karakterisering van die elektron bundel tot die opstel
en uitvoer van eksperimente. Ek was ook betrokke by die analisering van data en het dele van die data
analise sagteware geskryf.
|
97 |
Coadsorption of potassium and nitrogen on the Ni(100) surfaceScantlebury, Matthew John January 1998 (has links)
No description available.
|
98 |
Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfacesNorris, Andrew George January 2000 (has links)
No description available.
|
99 |
Structure-microwave dielectric property relations in Sr and Ca titanatesWise, Peter Leonard January 2001 (has links)
No description available.
|
100 |
Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron DiffractionDiercks, David Robert 08 1900 (has links)
The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have been compared and exhibit excellent agreement.
|
Page generated in 0.1962 seconds