• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 9
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 68
  • 41
  • 39
  • 14
  • 14
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Intramolecular and intracomplex electron transfer in water soluble redox proteins.

Bhattacharyya, Anjan Kumar. January 1988 (has links)
Electron transfer to and between the redox centers of milk xanthine oxidase was investigated by laser flash-photolysis. Evidence is presented for slow equilibration of electrons (k < 38 s⁻¹) between the various redox centers of the enzyme. The enzyme-bound flavin and the heme moieties of the flavoprotein and cytochrome subunits of p-cresol methyl hydroxylase from Pseudomonas putida are both reduced rapidly in a second order manner by 5-dRF generated by the laser flash, followed by slower first order intramolecular electron transfer (k = 220 s⁻¹) from the protein-bound neutral flavin radical to the oxidized cytochrome. Complex formation between spinach ferredoxin:NADP⁺-reductase (FNRₒᵪ), spinach ferredoxin (Fdₒᵪ), rubredoxin (Rdₒᵪ) from Clostridium pasteurianum, two homologous HIPIP's from Ectothiorhodospira halophila (iso-1 and iso-2) and two homologous cytochromes (cytochromes-c₂ from Paracoccus denitrificans and Rhodospirrilum rubrum) have been investigated. Evidence is presented supporting the formation of 1:1 complexes that are stabilized by attractive electrostatic interactions at low ionic strength. Kinetic studies of the above-mentioned complexes provide evidence for extremely rapid to relatively slower intracomplex electron transfer rates (k 7000 s⁻¹ to 4 s⁻¹). In addition the effect of complexation on the degree of accessibility of the various redox centers of the respective complexes to reduction by small reductants such as 5-dRF· and LfH· generated by the laser flash has been evaluated. The effect of both pH and ionic strength on the second order rate of reduction and the intracomplex rates in the respective complexes have also been investigated. The results have been interpreted in terms of redox potential differences, electrostatic and structural features that influence the electron transfer rates in these systems.
32

THE SYNTHESIS OF CHARGE TRANSFER COMPOUNDS.

Chandoke, Akhilesh. January 1982 (has links)
No description available.
33

Identifying Optimal Electron Donors to Promote Biosequestration of Uranium for an UMTRCA Title 1 Site

Abel, Erin Jessica, Abel, Erin Jessica January 2016 (has links)
Biostimulation is the use of in-situ microorganisms and added reagents in order to biosequester, precipitate, or absorb contaminants from contaminated groundwater and sediment. To test the effectiveness of this remediation approach at a particular site, small scale experiments, such as miscible-displacement, batch, or microcosm experiments, should be performed before a large-scale in-situ biosequestration electron donor injection. In this study, electron donor solutions containing contaminated groundwater and ethanol, acetate, benzoate, or glucose were injected into aquifer sediments collected from a UMTRCA Title 1 Site in Monument Valley, AZ. These experiments showed that ethanol, acetate, and glucose were effective electron donors for the stimulation of microbial activity in order to sequester uranium and reduce nitrate and sulfate concentrations. Conversely, benzoate was not effective at sequestering or reducing the contaminants. After electron-donor deficient groundwater was injected into the columns, a rebound of nitrate, sulfate, and uranium concentrations was observed. Due to this rebound, it was inferred that the mechanism of sequestration of uranium and hence reduction of nitrate and sulfate was due to the creation of reducing conditions via microbial activity. The insoluble reduced uranium was hypothesized to have precipitated or adsorbed to surrounding sediments. Incoming groundwater contained dissolved oxygen and therefore oxidized the reduced contaminants, consequently returning them into solution. It was hypothesized that a similar rebound would occur if ethanol, acetate, or glucose were to be injected in-situ due to sustained groundwater flow through the aquifer sediments on site.
34

Avaliação de algumas estratégias para o uso de metano como doador de elétrons na desnitrificação / Evaluation of strategies to methane application as electron donor in denitrification process

Costa, Rachel Biancalana 02 September 2016 (has links)
O principal objetivo deste trabalho foi a avaliação de estratégias que viabilizassem o uso do metano como doador de elétrons para desnitrificação em ambiente anóxico, visando à aplicação de tecnologia para pós-tratamento de efluente de reatores de manta de lodo e fluxo ascendente &#40;UASB&#41; aplicado no tratamento de esgoto sanitário. O trabalho foi dividido em cinco etapas, sendo que em todas elas o metano foi fornecido como única fonte de carbono orgânico. Na Etapa 1, foram comparados dois inóculos, em reatores em batelada sequenciais &#40;SBR&#41; com biomassa imobilizada. Como inóculo, foi utilizada mistura de sedimento marinho e sedimento de mangue &#40;SED-SBR&#41; ou lodo de reator UASB &#40;LAn-SBR&#41;. Na Etapa 2, foram avaliadas estratégias de enriquecimento da comunidade metanotrófica desnitrificante. Para tanto, foram operados dois SBRs: um com biomassa imobilizada &#40;Imob-SBR&#41; e outro com biomassa suspensa &#40;Susp-SBR&#41;. Na Etapa 3, foi operado reator contínuo de leito fixo e estruturado e fluxo ascendente &#40;Up-FSBR&#41;. Nas etapas 1 e 3, o metano suportou a ocorrência da desnitrificação e da manutenção celular. O consumo das formas nitrogenadas na Etapa 2 foi muito baixo e não foi possível concluir qual a melhor estratégia para enriquecimento da biomassa. Na Etapa 4, a biomassa retirada do Up-FSBR ao final da operação foi submetida a testes de endogenia. Foram operadas bateladas simples e, em cada uma, foi dosada apenas uma das formas nitrogenadas em condições com metano e sem metano. Os resultados mostraram que a redução das formas nitrogenadas é um processo paralelo à oxidação de metano. Na Etapa 5, foi avaliado o consumo de metano e de nitrato em SBR com biomassa suspensa em condições microaeradas e anóxicas. Foi observado que tanto a oxidação do metano quanto a redução do nitrato ocorrem em maior intensidade quando expostos a condições de microaerofilia. A análise dos resultados obtidos permite concluir que os organismos responsáveis pela redução de nitrato &#40;MD&#41; estabeleceram uma relação sintrófica com as bactérias oxidadoras de metano &#40;MM&#41;. Observou-se que, quando as bactérias oxidadoras de metano foram estimuladas, a desnitrificação ocorreu em maior intensidade. / This work aimed to develop the methane &#40;CH4&#41; application as electron donor to denitrification under anoxic conditions for post-treatment of Upflow Anaerobic Sludge Blanket &#40;UASB&#41; effluent, applied in sewage treatment systems. The study was conducted in five stages, in which methane was provided as the sole organic carbon source. In Stage 1, methanotrophic denitrification was assessed in Sequencing Batch Reactors &#40;SBR&#41; inoculated with a blend of marine and mangrove sediments &#40;SED-SBR&#41; or anaerobic sludge &#40;LAn-SBR&#41;. For both inocula. In Stage 2, strategies for the enrichment of methanotrophic-denitrifying community were evaluated. Two SBRs were operated: in one of them, biomass was immobilized &#40;Imob-SBR&#41; while the other was inoculated with suspended biomass &#40;Susp-SBR&#41;. In Stage 3, methanotrophic denitrification was addressed in an Upflow Fixed-Structured Bed Reactor &#40;Up-FSBR&#41;. In Stages 1 and 3, methane supported denitrification and cellular maintenance. In Stage 2, the consumption of oxidized nitrogen compounds was too low, and it was not possible to conclude which is the better strategy for enrichment of the methanotrophic-denitrifying community. In Stage 4, the biomass withdrawn from Up-FSBR was subjected to endogeny tests, in batch reactors. In each batch reactor, only nitrite or nitrate was provided, and both methane and methane-free conditions were tested. It was observed that nitrite and nitrate reduction occurred as a marginal process. In Stage 5, methane oxidation coupled to denitrification was assessed under both anoxic and microoxic conditions and both processes were stimulated under the latter. The obtained data suggest denitrifiers established a syntrophic relationship with methane-oxidizers, and when the latter was stimulated, the denitrification also occurred in greater extent.
35

Radiation curing and grafting of charge transfer complexes

Zilic, Elvis, University of Western Sydney, College of Health and Science, School of Natural Sciences January 2008 (has links)
Charge transfer (CT) complexes have been used in a number of radiation polymerisation processes including grafting and curing. The complexes studied include donor (D) monomers like vinyl ethers and vinyl acetate (VA) with acceptor (A) monomers such as maleic anhydride (MA). Both UV and EB have been utilised as radiation sources. The complexes are directly grafted to these substrates in the presence of radiation. The complexes yield novel copolymers when radiation cured with concurrent grafting improving the properties of the finished product. The term cure grafting has been proposed for this concurrent grafting process. Studies in basic photografting work to complement the cure grafting have been proposed. The role of solvent in grafting is discussed, particularly the effect of aromatics in photografting to naturally occurring trunk polymers like wool and cellulose. The effect of the double bond molar ratio (DBMR) of the DA components in grafting is examined. The ultraviolet (UV) conditions for gel formation during photografting, hence the importance of homopolymer yields in these processes is reported. A plausible mechanism to explain the results from this photografting work is proposed. The significance of these photografting studies in the related field of curing, especially in UV and ionising radiation (EB) systems, is discussed. EB curing and cure grafting of charge transfer (CT) monomer complexes is investigated. The EB results are compared with UV curing and cure grafting of the same complexes. The work has been extended to include EB/UV curing and cure grafting of thiolene systems. The significance of these results in the potential commercial application of these complexes is discussed. Variables affecting the UV/EB curing and cure grafting of thiolenes on cellulose have been studied. These include effect of varying the type of olefin, increasing the functionality of the thiol, use of acrylate monomers and oligomers in hybrid systems, altering the surface structure of the cellulose and finally the role of air in these processes particularly with EB. Photopolymerisation of the thiol-enes in bulk has also been investigated. The thesis content is based on the published work of 14 research papers over the course of the project. / Doctor of Philosophy (PhD)
36

The synthesis of advanced " special pair " models for the photosynthetic reaction centre

Mecker, Christoph J, Chemistry, Faculty of Science, UNSW January 2000 (has links)
Multi-step photoinduced electron transfer takes place over a large distance in the photosynthetic reaction centres (PRCs). Electron donor in this life-spending event is the photo-excited 'special pair', a unit of two electronically coupled porphyrinoid chromophores. Bacteriopheophytin and two quinone molecules function as electron acceptors and contribute to the charge separation with almost unit quantum efficiency. The natural photosynthetic reaction centre is the most sophisticated molecular electronic device to date and interest is high in increasing our understanding of the basic quantum mechanical principles behind efficient electron transfer and ultimately copying Nature and construct similar efficient devices. Two main approaches towards a better understanding of the mechanisms involved have been taken. The more biological disciplines isolate, cultivate and alternate reaction centres whereas synthetic chemists prefer to construct well-defined models that mimic certain aspects of the reaction centres. Such a synthetic approach is described in the 'Synthesis of Advanced 'Special Pair' Models for the Photosynthetic Reaction Centre'. The aspect to be mimicked is the 'special pair'. One or two porphyrins in a well-defined spatial disposition (kinked or non-kinked in respect to each other) were to act as electron donor in rigid bichromophoric and trichromophoric systems. A tetracyanonaphthoquinodimethane (TCNQ) unit was employed as the electron acceptor in the series of dyads synthesised. The TCNQ acceptor was replaced by a naphthoquinone (NQ) primary acceptor covalently linked to a TCNQ secondary electron acceptor in the series of triads. Rigid norbornylogous bridges held the chromophores in place and Diels-Alder methodology as well as condensation reactions were applied to link donor, bridge and acceptor components. Despite larger interchromophoric separation than in the natural 'special pair', the two porphyrin chromophores of the series of 'special pair' dyads show some interaction and thereby prove the success of our approach towards 'special pair' mimics. Strong fluorescence quenching in the porphyrin-TCNQ dyads indicates the sought after electron transfer process. A number of synthetic problems experienced and overcome in the synthesis of the series of triads led to discovery of a one-step 'bis-ketonisation' from an olefin under Sharpless bis-hydroxylation conditions with N-methylmorpholine-N-oxide. High pressure was applied to circumvent a lack of reactivity in the condensation reaction used to attach the porphyrin moieties (one or two) to the donor backbone. For the linkage of donor, bridge and acceptor component, a procedure was developed and successfully applied to give the giant mono-porphyrin-NQ-TCNQ trichromophore. In a similar manner 'special pair' trichromophoric systems should be available as part of future work.
37

Propylene Polymerization Using 4th Generation Ziegler-Natta Catalysts: Polymerization Kinetics and Polymer Microstructural Investigation

Alshaiban, Ahmad 02 August 2011 (has links)
A systematic study of propylene polymerization using a 4th generation Ziegler-Natta catalyst is presented in this thesis. The apparent kinetic rate constants for propylene polymerization were estimated in the presence and absence of hydrogen and/or donor. The estimated activation energies for activation, propagation, and deactivation were found to be close to values previously reported in the literature for similar catalysts. The polypropylene samples were characterized using high-temperature gel permeation chromatography (GPC), carbon-13 nuclear magnetic resonance (13C NMR), and crystallization elution fractionation (CEF). The effect of hydrogen and external electron donor on polypropylene microstructure was investigated at two polymerization temperatures. In addition to the expected electron donor positive effect on tacticity, hydrogen was also found to increase polypropylene tacticity. The effect of changing these polymerization conditions on molecular weight and polydispersity was also investigated. Finally, CEF profiles show how the distribution of polypropylene crystallizability changes by adding hydrogen and electron donor to the reactor. The concentrations of hydrogen and external donor were also varied to study their effect of polymerization kinetics and polymer microstructure. The estimated activation energies were close to those found in the first part of this investigation in the presence and/or absence of donor and hydrogen. A polypropylene microstructural study showed a positive effect of hydrogen concentration on mmmm pentad at low donor concentration, likely due to an increase in stereoselectivity of the aspecific sites by hydrogen. However, increasing donor concentration over a given threshold seems to transform the aspecific sitess into stereospecific sites that are no longer significantly affected by hydrogen. These experimental results were compared to a previously developed Monte Carlo model and found to agree with the trends predicted by simulation. Finally, the effect of diisopropyldimethoxysilane (P), n-propyltrimethoxysilane (N), paraethoxyethylbenzoate (PEEB), and dicyclopentyldimethoxysilane (D) external donors on catalyst activity and stereoselectivity was investigated. P and D donors were more stereoselective than N and PEEB donors; however, D donor had the best activity among all donors investigated. Therefore, D donor was mixed with PEEB to combine its high activity with the self-extinguishing properties of PEEB. The D/PEEB 90/10 (mol/mol) mixture generated a catalyst with good stereoselectivity but poor activity. When the ratio was increased to 95/5 and 98/2, the resulting catalyst had high activity and good stereoselectivity. Interestingly, the D/PEEB combination with just a small fraction of PEEB has a positive effect on the catalysts activation term which may decrease polymerization costs with this system.
38

Enhanced TCE anaerobic biodegradation with nano zero-valent iron

Liang, Tun-Chieh 20 August 2008 (has links)
The main objective of this study was to evaluate the feasibility of using nanoscale zero-valent iron (nZVI) as the source of hydrogen to enhance in situ anaerobic biodegradation of trichloroethylene (TCE). In the first part of this study, microcosms were constructed to evaluate the effects of different controlling factors [e.g., different redox conditions (aerobic and anaerobic conditions), different microorganisms (in situ microorganisms, activated sludge, and anaerobic sludge), and different sources of substrates and electron donors (phenol, cane molasses, hydrogen, and nZVI)] on TCE biodegradation. In the second part of this study, batch experiments were conducted to evaluate the feasibility of hydrogen production by nZVI and bimetallic particles. Results from the microcosm study indicate that in-situ microorganisms were capable of degrading TCE under aerobic and anaerobic conditions. Results also show that TCE removal was more effective by activated sludge and anaerobic sludge. Aerobic biodegradation of TCE was enhanced by the addition of phenol and cane molasses. Under anaerobic conditions, TCE removal could be improved when cane molasses and hydrogen were supplied. In addition, anaerobic TCE degradation was more effective with the presence of hydrogen. Results of microcosms conducted with the addition of nZVI reveal that TCE was degraded completely in both live and autoclaved microcosms. This indicates that chemical reductive dechlorination seemed to dominate the removal of TCE in microcosms. Therefore, further studies with higher TCE concentrations or lower nZVI doses need to be conducted to determine the effects of the produced hydrogen on TCE biodegradation. Results from the hydrogen production experiments indicate that efficiency of hydrogen production by nZVI ranged from 30% to 76%. Higher dose of nZVI addition resulted in higher amount of hydrogen production. The total amounts of hydrogen production were correlated with the doses of nZVI. In addition, rates and efficiency of hydrogen production by bimetallic particles were better than those of nZVI. Results of the batch experiments reveal that nZVI and bimetallic particles had good efficiency on hydrogen production. This indicates that nZVI and bimetallic particles have high potential to be used as hydrogen producers. In this study, a simple system consisted of only water and nZVI or bimetallic particles was applied to produce hydrogen. Although TCE in microcosms with nZVI addition was totally consumed by nZVI, results of microcosms with hydrogen addition demonstrated that hydrogen was able to improve the efficiency of anaerobic TCE biodegradation. Thus, it may be feasible to use nZVI as the source of hydrogen to enhance in situ anaerobic biodegradation of TCE. The advantages of using nZVI as the source of hydrogen include: (1) rapid removal of significant contaminant concentrations in the early stage of nZVI injection; (2) creation of a more reducing environment; (3) safer than liquid hydrogen, which is stored in steel containers; and (4) direct hydrogen supply without transfer of biological mechanisms compared to commercial hydrogen release compounds and other organic substrates. Results of this study suggest that biological reductive dechlorination of TCE can be enhanced if proper doses of nZVI are supplied in situ. Knowledge and comprehension obtained in this study will be helpful in designing an enhanced in situ anaerobic bioremediation system for a TCE-contaminated site.
39

Solvent effects upon the charge-transfer reaction of the ADMA molecule in the excited state /

Khajehpour, Mazdak, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
40

Solvent effects upon the charge-transfer reaction of the ADMA molecule in the excited state

Khajehpour, Mazdak, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.

Page generated in 0.0579 seconds