Spelling suggestions: "subject:"alectron impact excitation"" "subject:"dlectron impact excitation""
1 |
Polarisation correlation studies of the 3D states of heliumMcLaughlin, Damien T. January 1992 (has links)
No description available.
|
2 |
Electron Impact Excitation-Cavity Ringdown SpectroscopySahay, Peeyush 17 May 2014 (has links)
Electron impact excitation phenomena play an important role in atomic and molecular physics. The different energy levels of an atom or molecule interact differently with incoming electrons with different energies and that affects the excitation of the energy levels of the atoms and molecules. Studies involving electron impact excitation process are generally conducted with optical emission techniques or by the electron energy loss method. In the present study, for the first time, cavity ringdown spectroscopy (CRDS) has been used to investigate electron impact excitation phenomena of electronatom collision processes. The technique, i.e., electron impact excitation-cavity ringdown spectroscopy (EIE-CRDS), was employed for the purposes of fundamental study and of real-time applications. The fundamental study which was carried out in terms of determining electron impact excitation cross section (EIECS) has been demonstrated by measuring EIECS of a few excited levels of mercury (Hg) atom. For the application side, the EIE-CRDS technique has been employed for trace element detection. This dissertation first describes the fundamentals of electron impact excitationcavity ringdown spectroscopy (EIE-CRDS); afterwards its applications are demonstrated. A novel method of measuring excitation cross sections using this EIE-CRDS technique has been explained. In this method, first the excitation of atoms are achieved by electron impact excitation process, subsequently, CRDS measured absolute number density is utilized to determine the absolute EIECS values. Steps of the method are described in detail. Applicability of the method is demonstrated by measuring EIECS of three different energy levels of Hg, namely 6s6p 3P0, 6s6p 3P1, and 6s7s 3S1, and the obtained values are in agreement with those reported in the literature. Secondly, the EIE-CRDS technique was employed to investigate the absorption spectrum of mercury atom in the vicinity of 404.65 nm, corresponding to the transition 6s7s 3S1 -> 6s6p 3P0 levels of mercury. Elemental mercury was measured using a laser of wavelength 404.65 nm. The technological feasibility of developing a portable size instrument for mercury detection was explored. Subsequently, a portable size, dual-mode, plasma-CRDS based prototype instrument, capable of real-time trace element monitoring, was developed. The design, functioning, and specifications of the instrument are also explained.
|
3 |
Strong field excitation of electrons into localized states of fused silicaPflug, Theo 17 October 2022 (has links)
Although amorphous dielectrics feature localized states in the conduction band, electrons excited by highly intense laser radiation are usually considered as nearly free. However, localized or nearly free electrons would result in significantly different optical properties of the material. Therefore, this thesis investigates the transient complex refractive index of amorphous fused silica during the interaction with ultrashort pulsed laser radiation by applying spectroscopic imaging pump-probe ellipsometry. A Drude model, describing the excited electrons as a nearly free electron gas, and a Lorentz model, which considers the excited electrons as bound in localized states, are then approximated to the measured transient complex refractive index. The Lorentz model replicates the experimental data very well in the considered temporal range up to 200 fs after irradiation, whereas the Drude model significantly differs. Hence, the electrons are excited into localized states first, and are not describable as nearly free upon irradiation. / Obwohl amorphe Dielektrika lokalisierte Zustände im Leitungsband aufweisen, werden Elektronen, die durch hoch intensive Laserstrahlung angeregt werden, üblicherweise als quasifrei betrachtet. Im Gegensatz zu quasifreien Elektronen würden lokalisierte Elektronen jedoch zu deutlich anderen transienten optischen Eigenschaften des Materials führen. Daher wird in dieser Arbeit der transiente komplexe Brechungsindex von amorphem Quarzglas während der Wechselwirkung mit ultrakurz gepulster Laserstrahlung mittels spektroskopischer, abbildender Pump-Probe Ellipsometrie untersucht. Jeweils ein Drude-Modell, das die angeregten Elektronen als ein quasifreies Elektronengas beschreibt, und ein Lorentz-Modell, welches die angeregten Elektronen als in lokalisierten Zuständen gebunden betrachtet, werden anschließend mit dem gemessenen transienten komplexen Brechungsindex verglichen. Das Lorentz-Modell repliziert die experimentellen Daten im betrachteten Zeitbereich bis zu 200 fs nach der Bestrahlung sehr gut, während das Drude-Modell deutlich abweicht. Demnach werden die Elektronen zunächst in lokalisierte Zustände angeregt und können während und kurz nach der Bestrahlung nicht als quasifrei beschrieben werden.
|
Page generated in 0.0892 seconds