Spelling suggestions: "subject:"electron microscopy (analysis)"" "subject:"alectron microscopy (analysis)""
1 |
Avaliação do potencial carcinogênico do Megazol, agente anti-chagásico, e obtenção de nanopartículas de poli(<font face=\"Symbol\">e-caprolactona) contendo Megazol. / Genotoxic evaluation of megazol, antichagasic agent and obtaining nanoparticles of poly (<font face=\"Symbol\">e-caprolactone) containing megazol.Lima, Marta Lopes 21 October 2011 (has links)
Megazol (1-metil-2-(5-amino-1,3,4-tiadiazolil)-5-nitroimidazol) (MZ) tem sido descrito como um composto efetivo contra Tripanossoma cruzi, agente causador da Doença de Chagas. Contudo, este composto mostrou efeitos mutagênicos e baixa solubilidade em água. O primeiro objetivo desta pesquisa foi avaliar o potencial carcinogênico de três doses de MZ através do teste de Indice de Homozigotização (HI). Este teste mostra alterações nas frequências de crossing-over mitótico eventualmente envolvidas com genes heterozigotos auxotróficos em linhagens de Aspergillus nidulans. O teste HI mostrou alterações nas frequências de crossing-over mitótico quando o tratamento com MZ foi aplicado. O segundo objetivo foi o preparo de nanopartículas de poli(<font face=\"Symbol\">e-caprolactona) contendo MZ a partir do método de nanoprecipitação. O tamanho das nanopartículas obtidas foi de 280±1,34 nm e polidispersão de 0,13±0,003 nm. A análise de Microscopia Eletrônica (MEV) revelou nanopartículas de superfície lise e esférica. Uma eficiência de encapsulação de 24% foi alcançada para as nanopartículas de MZ. / Megazol (1-metil-2-(5-amino-1,3,4-tiadiazolil)-5-nitroimidazol) (MZ) has been describe as an effective compound against Trypanosoma cruzi, the causative agent of Chagas\'s disease. Nevertheless this compound has showed mutagenic effects and lower solubility in aqueous systems. The one aim of this research was evaluate the carcinogenic potential of three doses of megazol (MZ) through of homozygation index assay (HI). This short-term assay shows alterations in mitotic crossing-over frequencies eventually involving heterozygous auxotrophic genes in diploid strains of Aspergillus nidulans. The HI assay showed to mitotic crossing-over alteration in their frequency when the MZ was present. While the second aim was prepare poly-<font face=\"Symbol\">e-caprolactone nanoparticles by nanoprecipitation method loaded with MZ. The particle size of the prepared nanoparticles was the 280±1,34 nm and polydispersity was 0,13±0,003. Scanning electron microscopy (SEM) analyze reveled a smooth surface and spherical. The encapsulation efficiency about 24% was achieved to MZ nanoparticles.
|
2 |
Avaliação do potencial carcinogênico do Megazol, agente anti-chagásico, e obtenção de nanopartículas de poli(<font face=\"Symbol\">e-caprolactona) contendo Megazol. / Genotoxic evaluation of megazol, antichagasic agent and obtaining nanoparticles of poly (<font face=\"Symbol\">e-caprolactone) containing megazol.Marta Lopes Lima 21 October 2011 (has links)
Megazol (1-metil-2-(5-amino-1,3,4-tiadiazolil)-5-nitroimidazol) (MZ) tem sido descrito como um composto efetivo contra Tripanossoma cruzi, agente causador da Doença de Chagas. Contudo, este composto mostrou efeitos mutagênicos e baixa solubilidade em água. O primeiro objetivo desta pesquisa foi avaliar o potencial carcinogênico de três doses de MZ através do teste de Indice de Homozigotização (HI). Este teste mostra alterações nas frequências de crossing-over mitótico eventualmente envolvidas com genes heterozigotos auxotróficos em linhagens de Aspergillus nidulans. O teste HI mostrou alterações nas frequências de crossing-over mitótico quando o tratamento com MZ foi aplicado. O segundo objetivo foi o preparo de nanopartículas de poli(<font face=\"Symbol\">e-caprolactona) contendo MZ a partir do método de nanoprecipitação. O tamanho das nanopartículas obtidas foi de 280±1,34 nm e polidispersão de 0,13±0,003 nm. A análise de Microscopia Eletrônica (MEV) revelou nanopartículas de superfície lise e esférica. Uma eficiência de encapsulação de 24% foi alcançada para as nanopartículas de MZ. / Megazol (1-metil-2-(5-amino-1,3,4-tiadiazolil)-5-nitroimidazol) (MZ) has been describe as an effective compound against Trypanosoma cruzi, the causative agent of Chagas\'s disease. Nevertheless this compound has showed mutagenic effects and lower solubility in aqueous systems. The one aim of this research was evaluate the carcinogenic potential of three doses of megazol (MZ) through of homozygation index assay (HI). This short-term assay shows alterations in mitotic crossing-over frequencies eventually involving heterozygous auxotrophic genes in diploid strains of Aspergillus nidulans. The HI assay showed to mitotic crossing-over alteration in their frequency when the MZ was present. While the second aim was prepare poly-<font face=\"Symbol\">e-caprolactone nanoparticles by nanoprecipitation method loaded with MZ. The particle size of the prepared nanoparticles was the 280±1,34 nm and polydispersity was 0,13±0,003. Scanning electron microscopy (SEM) analyze reveled a smooth surface and spherical. The encapsulation efficiency about 24% was achieved to MZ nanoparticles.
|
3 |
Design of multilayer electrolyte for next generation lithium batteriesMahootcheian Asl, Nina 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Rechargeable lithium ion batteries are widely used in portable consumer electronics such as cellphones, laptops, etc. These batteries are capable to provide high energy density with no memory effect and they have small self-discharge when they are not in use, which increases their potential for future electric vehicles. Investigators are attempting to improve the performance of these cells by focusing on the energy density, cost, safety, and durability. The energy density improves with high operation voltage and high capacity. Before any further development of high voltage materials, safe electrolytes with high ionic conductivity, wide electrochemical window, and high stability with both electrodes need to be developed.
In this thesis a new strategy was investigated to develop electrolytes that can contribute to the further development of battery technology. The first study is focused on preparing a hybrid electrolyte, the combination of inorganic solid and organic liquid, for lithium based rechargeable batteries to illustrate the effect of electrode/electrolyte interfacing on electrochemical performance. This system behaves as a self-safety device at higher temperatures and provides better performance in comparison with the solid electrolyte cell, and it is also competitive with the pure liquid electrolyte cell. Then a multilayer electrolyte cell (MEC) was designed and developed as a new tool for investigating electrode/electrolyte interfacial reactions in a battery system. The MEC consists of two liquid electrolytes (L.E.) separated by a solid electrolyte (S.E.) which prevents electrolyte crossover while selectively transporting Li+ ions. The MEC successfully reproduced the performance of LiFePO4 comparable with that obtained from coin cells. In addition, the origin of capacity fading in LiNi0.5Mn1.5O4full-cell (with graphite negative electrode) was studied using the MEC. The performance of LiNi0.5Mn1.5O4 MEC full-cell was superior to that of coin full-cell by eliminating the Mn dissolution problem on graphite negative electrode as evidenced by transmission electron microscopy (TEM) analysis. The MEC can be a strong tool for identifying the electrochemical performances of future high voltage positive electrode materials and their electrode/electrolyte interfacial reactions. Finally, by employing the multilayer electrolyte concept, a new application will be introduced to recycle the lithium. This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li-ion battery containing Li-ion source materials from the battery’s anode, cathode, and electrolyte, thereby recycling the Li contained in the waste battery at the room temperature.
|
Page generated in 0.0781 seconds