Spelling suggestions: "subject:"6electronic anda optoelectronic cotransport"" "subject:"6electronic anda optoelectronic detransport""
1 |
Investigation of Electronic and Opto-electronic Properties of Two-dimensional Layers (2D) of Copper Indium Selenide Field Effect TransistorsPatil, Prasanna Dnyaneshwar 01 August 2017 (has links)
Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility µFE ≈ 36 cm^2 V^-1 s^-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of ~ 10^4 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility µFE can be increased from ~ 3 cm^2 V^-1 s^-1 in SiO2 back gated device to ~ 18 cm^2 V^-1 s^-1 in top gated electrolyte devices. Similarly, subthreshold swing can be improved from ~ 30 V/dec to 0.2 V/dec and on/off ratio can be increased from 10^2 to 10^3 by using an electrolyte as a top gate. These FETs were also tested as phototransistors. Our photo-response characterization indicate photo-responsivity ~ 32 A/W with external quantum efficiency exceeding 10^3 % when excited with a 658 nm wavelength laser at room temperature. Our phototransistor also exhibit response times ~ tens of µs with specific detectivity (D*) values reaching ~ 10^12 Jones. The CuIn7Se11 phototransistor properties can be further tuned & enhanced by applying a back gate voltage along with increased source drain bias. For example, photo-responsivity can gain substantial improvement up to ~ 320 A/W upon application of a gate voltage (Vg = 30 V) and/or increased source-drain bias. The photo-responsivity exhibited by these photo detectors are at least an order of magnitude better than commercially available conventional Si based photo detectors coupled with response times that are orders of magnitude better than several other family of layered materials investigated so far. Further photocurrent generation mechanisms, effect of traps is discussed in detail.
|
Page generated in 0.0781 seconds