• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoresponsive organic field-effect transistors (photOFETs) photodoping in OFETs

Marjanovic, Nenad January 2006 (has links)
Zugl.: Linz, Univ., Diss., 2006
2

Organic field-effect transistors and phototransistors based on amorphous materials

Saragi, Tobat Parasian Irianto. Unknown Date (has links)
University, Diss., 2004--Kassel.
3

Nano-Crystalline &Amorphous Silicon PhotoTransistor Performance Analysis

Zhang, Yanfeng January 2009 (has links)
In this thesis, we compared electrical performance and stability of a novel nanocrystalline Si (nc-Si) thin film phototransistor (TFT) phototransistor and a regular amorphous silicon (a-Si:H) TFT phototransistor for large area imaging applications. The electrical performance parameters of nc-Si TFT phototransistor were extracted from the electrical (current-voltage) testing in dark and under illumination. The field-effect mobility is found to be around 1.2 cm2V-1s-1, the threshold voltage around 3.9V and the sub-threshold voltage slope around 0.47V/Dec. Optical properties of nc-Si TFT phototransistor have been evaluated under the green light illumination in the range of 1014 – 1017 lum, and the photocurrent gain and the external quantum efficiency were extracted from the experimental results. By comparing the results with those for a-Si:H TFTs measured under the same conditions, we found that nc-Si TFT has higher photo current gain under low illumination intensity, 5 ×1014 to 7 ×1015 lum. This thesis shows the relations bewteen the photo current gain, the external quantum efficiency, TFT drain and TFT gate bias; the photo current gain and the external quantum efficiency can be controlled by the Vds and the Vgs.
4

Nano-Crystalline &Amorphous Silicon PhotoTransistor Performance Analysis

Zhang, Yanfeng January 2009 (has links)
In this thesis, we compared electrical performance and stability of a novel nanocrystalline Si (nc-Si) thin film phototransistor (TFT) phototransistor and a regular amorphous silicon (a-Si:H) TFT phototransistor for large area imaging applications. The electrical performance parameters of nc-Si TFT phototransistor were extracted from the electrical (current-voltage) testing in dark and under illumination. The field-effect mobility is found to be around 1.2 cm2V-1s-1, the threshold voltage around 3.9V and the sub-threshold voltage slope around 0.47V/Dec. Optical properties of nc-Si TFT phototransistor have been evaluated under the green light illumination in the range of 1014 – 1017 lum, and the photocurrent gain and the external quantum efficiency were extracted from the experimental results. By comparing the results with those for a-Si:H TFTs measured under the same conditions, we found that nc-Si TFT has higher photo current gain under low illumination intensity, 5 ×1014 to 7 ×1015 lum. This thesis shows the relations bewteen the photo current gain, the external quantum efficiency, TFT drain and TFT gate bias; the photo current gain and the external quantum efficiency can be controlled by the Vds and the Vgs.
5

Ladungsbasierte analog-digitale Signalverarbeitung für schnelle CMOS-Bildsensoren /

Döge, Jens. January 2008 (has links)
Zugl.: Dresden, Techn. Universiẗat, Diss., 2008 u.d.T.: Döge, Jens: Ladungsbasierte analog-digitale Signalverarbeitung am Beispiel eines schnellen CMOS-Bildsensors mit integrierter Vorverarbeitung.
6

SiGe/Si Microwave Photonic devices and Interconnects towards Silicon-based full Optical Links / SiGe / Si micro-ondes photoniques Phototransistors et interconnexions vers Silicon-base tous les liens optiques

Tegegne, Zerihun 11 May 2016 (has links)
Avec la croissance forte de ces dernières années des objets connectés les technologies de communication optique et radio voient davantage d’opportunités de s’associer et se combiner dans des technologies bas-couts Photoniques-Microondes (MWP). Les réseaux domestiques en sont un exemple. La bande millimétrique notamment, de 57GHz à 67GHz, est utilisé pour contenir les exigences des communications sans fils très haut-débit, néanmoins, la couverture de ces systèmes wireless est limitée en intérieur (indoor) essentiellement à une seule pièce, à la fois du fait de l’atténuation forte de l’atmosphère dans cette bande de fréquence, mais aussi de fait de l’absorption et de la réflexion des murs. Ainsi il nécessaire de déployer une infrastructure pour diffuser l’information au travers d’un système d’antennes distribuées. Les technologiques optiques et photoniques-microondes sont une des solutions envisagées. Les technologies MWP se sont également étendues et couvrent une gamme très large d’applications incluant les communications mobiles 5G, les analyses biomédicales, les communications courtes-distances (datacom), le traitement de signal par voie optique et les interconnexions dans les véhicules et aéronefs. Beaucoup de ces applications requièrent de la rapidité, de la bande-passante et une grande dynamique à la fois, en même temps de demander des dispositifs compacts, légers et à faible consommation. Le cout d’implémentation est de plus un critère essentiel à leur déploiement, en particulier dans l’environnement domestique ainsi que dans d’autres applications variées des technologies MWP.Ce travail de thèse vise ainsi le développement de composants photonique-microondes (MPW) intégrés en technologie BiCMOS ou Bipolaire SiGe/Si, à très bas coût, incluant les phototransistors bipolaires à hétérojonctions (HPT) SiGe/Si, les Diodes Electro-Luminescentes (LED) Si et SiGe, ainsi que l’intégration combinées des composants optoélectroniques et microondes, pour l’ensemble des applications impliquant des courtes longueurs d’ondes (de 750nm à 950nm typiquement).Ces travaux se concentrent ainsi sur les points suivants :La meilleure compréhension de phototransistors SiGe/Si latéraux et verticaux conçus dans une technologie HBT SiGe 80GHz de Telefunken GmbH. Nous traçons des conclusions sur les performances optimales du phototransistor. Les effets de photodétection du substrat et de la dispersion spatiale des flux de porteurs sont analysés expérimentalement. Cette étude aide à développer des règles de dessin pour améliorer les performances fréquentielles du phototransistor HPT pour les applications visées.Dans l’objectif de développer de futures interconnexions intra- et inter- puces, nous concevons des lignes de transmissions faibles-pertes et des guides d’ondes optiques polymères sur Silicium faible résistivité. Il s’agit d’une étape afin d’envisager des plateformes Silicium dans lesquelles les HPT SiGe pourront potentiellement être intégrés de manière performante à très bas coût avec d’autres structures telles que des lasers à émission par la surface (VCSEL), afin de construire un transpondeur optique complet sur une interface Silicium. Le polymère est utilisé comme une interface diélectrique entre les lignes de transmission et le substrat, pour les interconnexions électriques, et pour définir le gain du guide d’onde optique dans les interconnexions optiques.La conception, la fabrication et la caractérisation du premier lien photonique-microonde sur puce Silicium sont menées en se basant sur la même technologie HBT SiGe 80GHz de Telefunken dans la gamme de longueur d’onde 0,65µm-0,85µm. Ce lien optique complétement intégré combine des LEDS Silicium en régime d’avalanche (Si Av LED), des guides d’ondes optiques Nitrure et Silice ainsi qu’un phototransistor SiGe. Un tel dispositif pourrait permettre d’accueillir à l’avenir des communications sur-puce, de systèmes micro-fluidiques et des applications d’analyse biochimiques / With the recent explosive growth of connected objects, for example in Home Area Networks, the wireless and optical communication technologies see more opportunity to merge with low cost MicroWave Photonic (MWP) technologies. Millimeter frequency band from 57GHz to 67GHz is used to accommodate the very high speed wireless data communication requirements. However, the coverage distance of these wireless systems is limited to few meters (10m). The propagation is then limiting to a single room mostly, due to both the high propagation attenuation of signals in this frequency range and to the wall absorption and reflections. Therefore, an infrastructure is needed to lead the signal to the distributed antennas configuration through MWP technology. Moreover, MWP technology has recently extended to address a considerable number of novel applications including 5G mobile communication, biomedical analysis, Datacom, optical signal processing and for interconnection in vehicles and airplanes. Many of these application areas also demand high speed, bandwidth and dynamic range at the same time they require devices that are small, light and low power consuming. Furthermore, implementation cost is a key consideration for the deployment of such MWP systems in home environment and various integrated MWP application.This PhD deals with very cheap, Bipolar or BiCMOS integrated SiGe/Si MWP devices such as SiGe HPTs, Si LEDs and SiGe LEDs, and focused on the combined integration of mm wave and optoelectronic devices for various applications involving short wavelength links (750nm to 950nm).This research focused on the study of the following points:The better understanding of vertical and lateral illuminated SiGe phototransistors designed in a 80 GHz Telefunken GmbH SiGe HBT technology. We draw conclusions on the optimal performances of the phototransistor. The light sensitive Si substrate and two-dimensional carrier flow effects on SiGe phototransistor performance are investigated. This study helps to derive design rules to improve frequency behavior of the HPT for the targeted applications.For future intra /inter chip hybrid interconnections, we design polymer based low loss microwave transmission lines and optical waveguides on low resistive silicon substrate. It is a step to envisage further Silicon based platforms where SiGe HPT could be integrated at ultra-low cost and high performances with other structures such high-speed VCSEL to build up a complete optical transceiver on a Silicon optical interposer. The polymer is used as dielectric interface between the line and the substrate for electrical interconnections and to design the core and cladding of the optical waveguide.The design, fabrication and characterization of the first on-chip microwave photonic links at mid infrared wavelength (0.65-0.85μm) based on 80 GHz Telefunken GmbH SiGe HBT technological processes. The full optical link combines Silicon Avalanche based Light Emitting Devices (Si Av LEDs), silicon nitride based waveguides and SiGe HPT. Such device could permit hosting microfluidic systems, on chip data communication and bio-chemical analysis applications
7

Transistor silicium en couche mince à base de nano-particules de PbS : un efficace phototransistor pour la détection de lumière infrarouge / Silicon thin film transistor based on PbS nano-particles : an efficient phototransistor for the detection of infrared light

Liu, Xiang 27 December 2016 (has links)
Le phototransistor est un nouveau type de photo-détecteur avec une structure MOSFET spéciale qui peut non seulement convertir la lumière absorbée en variation de courant, mais également auto-amplifier ce photo-courant. En particulier, avec des progrès continus dans la synthèse des points Quantum Dots (QDs), les caractères optiques et électriques uniques renforcent le coefficient d'absorption et la génération des trous d'électrons par des processus intégrés faciles. Dans cette thèse, on a synthétisé les PdS infrarouges PbS avec une large absorption infrarouge (IR) (600-1400 nm) et un rendement élevé pour être mélangés avec l'isolateur de porte SU8 des TFT à faible température de poly-silicium (LTPS). Grâce à l'utilisation de cet isolateur de porte photo-sensoriel hybride, ces LTPS TFT peuvent encore obtenir d'excellentes performances électriques telles qu'une mobilité suffisante (3.1 cm2 / Vs), des caractères TFT stables, un rapport marche / arrêt raisonnable (104 ~ 105) et une tension sous-seuil /Déc). De plus, en cas d'exposition à la lumière infrarouge incidente, la sensibilité élevée (1800 A/W) et la sensibilité non négligeable (13 A/W) se trouvent respectivement à 760 nm et 1300 nm. De plus, la photosensibilité atteint également jusqu'à 80 et le temps de réponse est d'environ 30 ms pendant un balayage du signal IR pulsé. Elle prend des mesures concrètes pour l'application générale du phototransistor IR. / Phototransistor is a novel type of photodetector with special MOSFET structure which can not only convert absorbed light into variation of current but also self-amplify this photocurrent. Especially, with continual advances in quantum dots' (QDs) synthesis, the unique optical-electrical characters reinforce absorption coefficient and electron-hole's generation by easy integrated processes. In this thesis, the infrared PbS QDs with wide infrared (IR) absorption (600-1400 nm) and high efficiency were synthesized to be blended with SU8 gate insulator of Low-Temperature-Poly-Silicon (LTPS) TFTs. Through using this hybrid photo-sensing gate insulator, this LTPS TFTs can still obtain excellent electrical performance such as enough mobility (3.1 cm2/Vs), stable TFT's characters, reasonable on/off ratio (104~105) and subthreshold voltage (3.2 V/Dec). Moreover, under incident IR light's exposure, the high responsivity (1800 A/W) and not negligible responsivity (13 A/W) can be found at 760 nm and 1300 nm respectively. In addition, the photosensitivity also reaches up to 80 and the response time is approximately 30 ms during a pulsed IR signal's scanning. It takes concrete steps forward for the broad application of IR phototransistor.
8

Bezkontaktní měření otáček ventilátoru / Contactless measuring ventilator-revolution counter

Pokorný, Aleš January 2010 (has links)
This project is about design of contactless measuring ventilator - revolution counter. The counter serves to measurement of the speed of ventilator. The measurement is based on optical method of receiving the reflected laser beam. To measure and calculate use the revolution counter the microcontroller. This measured value is diplayed on LCD. After design follows experimental measurement.
9

Organic Planar Heterojunction Phototransistor Devices

Bai, Shaoling 15 July 2024 (has links)
Organic phototransistors (OPTs) can enable essential applications, such as nonvolatile memory, artificial synapses, and photosensors in next-generation optical communication and wearable electronics. Among these applications, nonvolatile OPT memories are particularly promising, as they can retain captured visual information for extended periods, making them valuable for data storage, image and video processing applications. The capability of storing multi-bit information, which provides a low-cost way to increase the memory density per unit cell area, is one of the most critical challenges of memory products. In this work, we explore different solution-processible electrets to obtain highly sensitive phototransistor memory devices. Different planar heterojunctions, including small molecule/small molecule and small molecule/polymer, are used to fabricate OPT memories. Additionally, we explore the feasibility of producing polymer/polymer planar heterojunctions through printing processes. Firstly, OPT memories that can be programmed with white light and erased by applying a negative voltage are fabricated with a planar heterojunction of a nonconductive nanographene layer and a semiconducting layer of 2,9-didecyldinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (C10-DNTT). We systematically study the optical and memory characteristics of devices with an 8 nm nanographene (NG) layer. The photosensitivity of such devices can be as high as 3.4×105. The memory also shows quite good endurance and data-storing stability; an endurance of 100 write-read-erase-read (WRER) cycles and 1.5×105 s retention time are obtained. The thickness of the NG layer has a considerable influence on the performance of fabricated devices. The results suggest that devices with a thicker NG layer are more sensitive to weak light. In comparison, devices with a relatively thin NG layer are found to be promising for multi-bit photo memory devices. Secondly, we fabricate OPT memories by replacing the nanographene layer with a commercially available semiconducting polymer, namely Poly(2,5-bis(2-octyldodecyl)-3,6-di(pyridin-2-yl)-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2,2’-bithiophene) (PDBPyBT). This polymer possesses a narrow bandgap and exhibits a broad range of light absorption, spanning from ultraviolet (UV) to red light wavelengths. As a result, the fabricated devices are capable of responding to a broad spectrum of light colors. The light response of these devices is investigated in terms of their reaction to different colors of light. Also, devices with varying thicknesses of the PDBPyBT layer are fabricated and studied. The results indicate that all of the fabricated devices demonstrate multi-bit programming properties, and the devices incorporating a thin, ribbon-structured PDBPyBT layer are particularly well-suited for applications as light dosimeters. Moreover, the results highlight that both the C10-DNTT and the PDBPyBT layer function as photo exciton generation and charge-trapping layers. Last, we seek to fabricate cost-effective organic multilayer devices through a solution-processing approach, eliminating the need for orthogonal solvents. We observe a crosslinking effect in the thin films caused by thermal annealing without using any crosslinker. Remarkably, this effect is found to be universal for several commercial semiconducting polymers investigated in our study. Following annealing at 200 ºC or higher temperatures, the thin films exhibit enhanced stability against the original solvent. Various analytical techniques are employed to examine the thin films to gain insights into the microstructural changes. Our results suggest that the observed crosslinking effect is predominantly attributed to a physical transformation, whereby the films became more crystalline after annealing at relatively high temperatures. To further explore the feasibility of fabricating multilayer devices, we simulate the construction of multilayer devices by top-gate-bottom-contact (TGBC) devices using the same solvent for the polymer dielectric layer and the semiconducting layer. We also fabricated planar polymer/polymer heterojunction via this method. Encouragingly, this approach demonstrated that thermal annealing could work as a straightforward and promising method for producing cost-effective organic multilayer devices, e.g., fully solution-processed diodes, functional transistors, and solar cells.:Abstract iii Contents vii 1 Introduction 1 1.1 Motivation 1 1.2 Organic semiconductor 2 1.2.1 Atom orbitals and molecular orbitals 2 1.2.2 Energy levels in solid 5 1.2.3 Fermi level 6 1.2.4 Band bending 7 1.2.5 From orbital to states 8 1.2.6 Organic semiconductor materials 9 1.2.7 Nanographene 10 1.2.8 Charge carrier transport in organic semiconductors 11 1.3 Organic field-effect transistors (OFET) 11 1.3.1 OFET architectures 12 1.3.2 OFET operation principle 12 1.3.3 OFET performance parameters 14 1.3.4 OFET memory 17 1.4 Optical electronics 20 1.4.1 Exciton pair generation. 20 1.4.2 Photoelectronic devices 21 1.4.3 Phototransistor devices 22 1.5 Phototransistor memories 23 1.5.1 Working mechanism of phototransistor memories 23 1.5.2 Phototransistor memory architecture 24 1.5.3 State-of-the-art organic phototransistor memory 25 1.6 Objective and outline 27 2 Materials and methods 29 2.1 Materials 29 2.2 Device fabrication 30 2.2.1 Substrate cleaning 30 2.2.2 Solution shearing 30 2.2.3 Thermal vapor deposition 31 2.3 Characterization 31 2.3.1 Thin film characterization 31 2.3.2 Current voltage characteristics 35 2.3.3 Capacitance 36 3 C10-DNTT/NG planar heterojunction phototransistor memories 37 3.1 Introduction 37 3.2 Thin films 39 3.2.1 Film and device fabrication 39 3.2.2 Characterization of thin films 39 3.3 Transfer characteristics under light 41 3.3.1 Writing process 41 3.3.2 Erasing process 48 3.3.3 C10-DNTT-only devices 51 3.4 Summary of working principle 52 3.5 Output characteristics and evaluation of the optical properties 52 3.6 Memory properties of NG-based OPT memory devices 55 3.7 Devices with different NG thicknesses 56 3.7.1 The impact of NG thickness 56 3.7.2 Devices fabricated from 0.05 mg ml-1 NG solution 60 3.8 Conclusion 64 4 C10-DNTT/PDBPyBT heterojunction phototransistor memories 67 4.1 Introduction 67 4.2 Device Architecture 68 4.3 Physical characterization of PDBPyBT and C10-DNTT thin films 69 4.4 Performance of devices with a thick PDBPyBT layer 72 4.4.1 Erasing and programming process 72 4.4.2 Response to different colors of light 78 4.5 Variation of PDBPyBT thickness 80 4.5.1 Transfer characteristics 80 4.5.2 Morphology of C10-DNTT 85 4.5.3 Output characteristics 86 4.5.4 Multi-level programming test 86 4.6 Comparison of the devices 92 4.7 Summary 93 5 Organic multilayer devices fabricated via thermal annealing 95 5.1 Introduction 95 5.2 Film Fabrication 97 5.3 Study on thin films 97 5.3.1 Thickness changes 97 5.3.2 Characterization of the thin films 99 5.3.3 Impact of re-annealing 107 5.3.4 Other semiconducting polymers 108 5.4 Discussion of the working mechanism 110 5.5 Impact of thermal annealing on devices’ performance 111 5.5.1 BGTC devices fabrication 111 5.5.2 TGBC devices fabrication 113 5.6 Planar heterojunction devices via solution processing 116 5.7 Conclusion 117 6 Conclusions and outlook 119 6.1 Conclusions 119 6.2 Outlook 120 Bibliography 123 List of Figures 143 List of Tables 155 List of abbreviations 157 Appendix A 159 Appendix B 165 B1.1 Introduction 165 B1.2 Devices with a 7 nm shear coated Al2O3 dielectric 166 B1.2.1 Normal-sized channel devices 166 B1.2.2 Ultra-wide channel devices 167 B1.3 Devices with a 30 nm ALD Al2O3 dielectric 169 B1.3.1 Normal-sized channel devices 169 B1.3.2 Ultra-wide channel devices 170 B1.4 Ferroelectric organic phototransistor devices 172 B1.4.1 Dielectric layer 172 B1.4.2 Devices with 10 nm HZO 173 B1.4.3 Devices with 30 nm HZO 175 Conclusion 176 Publications 177 Acknowledgment 179
10

Investigation of Electronic and Opto-electronic Properties of Two-dimensional Layers (2D) of Copper Indium Selenide Field Effect Transistors

Patil, Prasanna Dnyaneshwar 01 August 2017 (has links)
Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility µFE ≈ 36 cm^2 V^-1 s^-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of ~ 10^4 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility µFE can be increased from ~ 3 cm^2 V^-1 s^-1 in SiO2 back gated device to ~ 18 cm^2 V^-1 s^-1 in top gated electrolyte devices. Similarly, subthreshold swing can be improved from ~ 30 V/dec to 0.2 V/dec and on/off ratio can be increased from 10^2 to 10^3 by using an electrolyte as a top gate. These FETs were also tested as phototransistors. Our photo-response characterization indicate photo-responsivity ~ 32 A/W with external quantum efficiency exceeding 10^3 % when excited with a 658 nm wavelength laser at room temperature. Our phototransistor also exhibit response times ~ tens of µs with specific detectivity (D*) values reaching ~ 10^12 Jones. The CuIn7Se11 phototransistor properties can be further tuned & enhanced by applying a back gate voltage along with increased source drain bias. For example, photo-responsivity can gain substantial improvement up to ~ 320 A/W upon application of a gate voltage (Vg = 30 V) and/or increased source-drain bias. The photo-responsivity exhibited by these photo detectors are at least an order of magnitude better than commercially available conventional Si based photo detectors coupled with response times that are orders of magnitude better than several other family of layered materials investigated so far. Further photocurrent generation mechanisms, effect of traps is discussed in detail.

Page generated in 0.0748 seconds