• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 128
  • 34
  • 31
  • 11
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 637
  • 637
  • 149
  • 127
  • 117
  • 113
  • 108
  • 93
  • 90
  • 80
  • 76
  • 73
  • 60
  • 59
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

System-on-package solutions for multi-band RF front end

Duo, Xinzhong January 2005 (has links)
Advances in microelectronics technology have enabled us to integrate a complex electronic system (such as a radio) on a single chip or in a single package module, known as system-on-chip (SoC) and system-on-package (SoP) paradigms. This brings not only new opportunities for system integration, but also challenges in design and implementation. One of these challenges is how to achieve an optimum total solution of system integration via chip and package co-design, because there is no tool or design methodology available for such kind of optimization. This thesis focuses on innovative multi-band multi-standard radio front-end design and explores a new design methodology. The motivation of developing this design methodology is to achieve an optimum total solution for radio system implementation via chip and package co-design and co-optimization. The methodology starts from RF packaging and components modeling. Necessary models for both on-chip and off-chip passives are developed. Parasitic effects of packages for radio chips are modeled for particular frequencies. Compared with high-speed digital packaging, RF packaging normally deals with narrow band signals. It is possible to absorb some unwanted parasitics by designing proper port matching networks. In addition, cost-performance trade-offs are performed. In this context, we first developed process and technology based cost models, which include parameters like chip real estate, raw materials, package, test and rework. Impact of process variation on final yield has also been considered in the models by using a statistical analysis approach. Performance of different design options is measured by a special FoM (figure-of-merit). Each type of analog/RF circuit (such as LNA, PA and ADC) has its own dedicated FoM. Through a series of cost-performance trade-offs for different on-chip versus off-chip passives and partitions, an optimum total solution is obtained. Finally, this methodology was demonstrated via a number of design examples for multi-band multi-standard radio front-end. The author has explored the optimum solutions for different circuit architectures and process technologies encompassing parallel, concurrent and digitally programmable multi-band radio frond-end blocks. It is interesting to find that, for complex RF circuits like a multi-band multi-standard radio, moving some passives off-chip will have significant cost-savings. In addition to the above contributions, the author has also developed an MCM-D technology on LCP and glass substrates, based on metal deposition and BCB spin-coating at KTH clean room. The author has also performed some preliminary studies on UWB radio for RFID applications. / QC 20101005
222

Controlling Electronic and Geometrical Structure of Honeycomb-Lattice Materials Supported on Metal Substrates : Graphene and Hexagonal Boron Nitride

Vinogradov, Nikolay January 2013 (has links)
The present thesis is focused on various methods of controlling electronic and geometrical structure of two-dimensional overlayers adsorbed on metal surfaces exemplified by graphene and hexagonal boron nitride (h-BN) grown on transition metal (TM) substrates. Combining synchrotron-radiation-based spectroscopic and various microscopic techniques with in situ sample preparation, we are able to trace the evolution of overlayer electronic and geometrical properties in overlayer/substrate systems, as well as changes of interfacial interaction in the latter.It is shown that hydrogen uptake by graphene/TM substrate strongly depends on the interfacial interaction between substrate and graphene, and on the geometrical structure of graphene. An energy gap opening in the electronic structure of graphene on TM substrates upon patterned adsorption of atomic species is demonstrated for the case of atomic oxygen adsorption on graphene/TM’s (≥0.35 eV for graphene/Ir(111)). A non-uniform character of adsorption in this case – patterned adsorption of atomic oxygen on graphene/Ir(111) due to the graphene height modulation is verified. A moderate oxidation of graphene/Ir(111) is found largely reversible. Contrary, oxidation of h-BN/Ir(111) results in replacing nitrogen atoms in the h-BN lattice with oxygen and irreversible formation of the B2O3 oxide-like structure.      Pronounced hole doping (p-doping) of graphene upon intercalation with active agents – halogens or halides – is demonstrated, the level of the doping is dependent on the agent electronegativity. Hole concentration in graphene on Ir(111) intercalated with Cl and Br/AlBr3 is as high as ~2×1013 cm-2 and ~9×1012 cm-2, respectively.     Unusual periodic wavy structures are reported for h-BN and graphene grown on Fe(110) surface. The h-BN monolayer on Fe(110) is periodically corrugated in a wavy fashion with an astonishing degree of long-range order, periodicity of 2.6 nm, and the corrugation amplitude of ~0.8 Å. The wavy pattern results from a strong chemical bonding between h-BN and Fe in combination with a lattice mismatch in either [11 ̅1] or [111 ̅] direction of the Fe(110) surface. Two primary orientations of h-BN on Fe(110) can be observed corresponding to the possible directions of lattice match between h-BN and Fe(110).     Chemical vapor deposition (CVD) formation of graphene on iron is a formidable task because of high carbon solubility in iron and pronounced reactivity of the latter, favoring iron carbide formation. However, growth of graphene on epitaxial iron films can be realized by CVD at relatively low temperatures, and the formation of carbides can be avoided in excess of the carbon-containing precursors. The resulting graphene monolayer creates a periodically corrugated pattern on Fe(110): it is modulated in one dimension forming long waves with a period of ~4 nm parallel to the [001] direction of the substrate, with an additional height modulation along the wave crests. The novel 1D templates based on h-BN and graphene adsorbed on iron can possibly find an application in 1D nanopatterning. The possibility for growing high-quality graphene on iron substrate can be useful for the low-cost industrial-scale graphene production.
223

Spectroscopic analysis of selected silicon ceramics

Leitch, Sam Anthony 17 June 2005
<p>Silicon ceramics are popular in both commercial applications and material research. The purpose of this thesis is to present measurements and analysis of four different silicon ceramics: á, â and ã phases of silicon nitride and silicon oxynitride using soft x-ray spectroscopy, which analyses the electronic structure of materials by measuring the absorption and emission of x-ray radiation. Absorption and emission spectra of these materials are presented, many of which have not be previously documented. The results are compared to model spectra and together they provide information about the electronic structure of the material.</p><p>Assignments of emission features to element, orbital, and site symmetry are performed for each material. Combinations of silicon and nitrogen emission spectra provide insight into the strained bonding structure of nitrogen. It is concluded that p-dð interaction plays a role in the bonding arrangement of nitrogen and oxygen sites within these structures. The emission features of non-equivalent silicon sites within ã-Si3N4 are identified, which represents some of the first analysis of same element, non-equivalent sites in a material.</p><p>Silicon absorption and emission spectra were plotted on the same energy scale to facilitate measurement of the band gap. Since previously measured band gaps are not well represented in literature, the measured band gaps were compared to values predicted using DFT calculations. The band gap values are in reasonable agreement to calculated values, but do not vary as widely as predicted.</p>
224

Electronic and thin film stacking structure of Organic Semiconductors

Bazylewski, Paul Francis 06 September 2011
Presented here is a study of the electronic properties and molecular stacking structure of four novel X-shaped anthracene based organic semiconductors utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory (DFT) calculations. These materials have been found to exhibit high charge carrier mobility when used in organic thin film transistors without an annealing step. Angle resolved NEXAFS show local molecular order through polarization dependence in C 1s → π* transitions, and that the plane of the anthracene core is oriented nearly normal to the plane of the substrate. DFT calculations were used examine electronic structure and the effects of molecular geometry, showing that the highest occupied molecular orbital (HOMO) conjugation extends to the thiophene end groups. The attachment of the thiophene end group is determined to modify intermolecular interaction, resulting in either a cofacial or herringbone structure. With the understanding of how these materials form an ordered crystal structure, future fabrication of new materials may be directed towards a preference for crystallization without annealing. A study with applications for organic photovoltaic devices was also undertaken to examine the thin film stacking structure of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). NEXAFS measurements show that the side chain lifts the energy degeneracy of the C60 molecular orbitals around the chain attachment. This breaks the spatial π -orbital symmetry of the lowest unoccupied molecular orbital (LUMO) of the C60 backbone which is observed through polarization dependence of π* transitions. The intensity dependence is further analyzed to determine the bulk crystal structure of PCBM.
225

Electronic and thin film stacking structure of Organic Semiconductors

Bazylewski, Paul Francis 06 September 2011 (has links)
Presented here is a study of the electronic properties and molecular stacking structure of four novel X-shaped anthracene based organic semiconductors utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory (DFT) calculations. These materials have been found to exhibit high charge carrier mobility when used in organic thin film transistors without an annealing step. Angle resolved NEXAFS show local molecular order through polarization dependence in C 1s → π* transitions, and that the plane of the anthracene core is oriented nearly normal to the plane of the substrate. DFT calculations were used examine electronic structure and the effects of molecular geometry, showing that the highest occupied molecular orbital (HOMO) conjugation extends to the thiophene end groups. The attachment of the thiophene end group is determined to modify intermolecular interaction, resulting in either a cofacial or herringbone structure. With the understanding of how these materials form an ordered crystal structure, future fabrication of new materials may be directed towards a preference for crystallization without annealing. A study with applications for organic photovoltaic devices was also undertaken to examine the thin film stacking structure of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). NEXAFS measurements show that the side chain lifts the energy degeneracy of the C60 molecular orbitals around the chain attachment. This breaks the spatial π -orbital symmetry of the lowest unoccupied molecular orbital (LUMO) of the C60 backbone which is observed through polarization dependence of π* transitions. The intensity dependence is further analyzed to determine the bulk crystal structure of PCBM.
226

Describing strong correlations with mean-field approximations

Tsuchimochi, Takashi 06 September 2012 (has links)
Strong electron correlations in electronic structure theory are purely quantum effects arising as a result of degeneracies in molecules and materials, and exhibit significantly different yet interesting characters than do weak correlations. Although weak correlations have recently been able to be described very efficiently and accurately within single particle pictures, less known are good prescriptions for treating strong correlations efficiently. Brute-force calculations of strong correlations in wave function theories tend to be very computationally-intensive, and are usually limited to small molecules for applications. Breaking symmetry in a mean-field approximation is an efficient alternative to acquire strong correlations with, in many cases, qualitatively accurate results. The symmetry broken in quantum chemistry has been traditionally of spin, in so-called unrestricted methods, which typically break spatial symmetry as a consequence, and vice versa, in most situations. In this work, we present a novel approach to accurately describing strong correlations with a mean-field cost by means of Hartree- Fock-Bogoliubov (HFB) theory. We are inspired by the number-symmetry-breaking in HFB, which, with an attractive particle interaction, accounts for strong correlations, while maintaining spin and spatial symmetry. We show that this attractive interaction must be restricted to the chemically-relevant orbitals in an active space to obtain physically meaningful results. With such constraints, our constrained pairing mean-field theory (CPMFT) can accurately describe potential energy curves of various strongly-correlated molecular systems, by cleanly separating strong and weak correlations. To achieve the correct dissociation limits in hetero-atomic molecules, we have modified our CPMFT functional by adding asymptotic constraints. We also include weak correlations by combining CPMFT with density functional theory for chemically accurate results, and reveal the connection between CPMFT and traditional unrestricted methods. The similarity between CPMFT and unrestricted methods leads us to the idea of constrained active space unrestricted mean-field approaches. Motivated by CPMFT, we partially retrieve spin-symmetry that has been fully broken in unrestricted methods. We allow symmetry breaking only in an active space. This constrained unrestricted Hartree-Fock (CUHF) is an interpolation between two extrema: the fully broken-symmetry solution and the symmetry preserved solution. This thesis defines the theory behind and reports the results of CUHF. We first show that, if an active space is chosen to include only open-shell electrons, CUHF reduces to restricted open-shell Hartree-Fock (ROHF), and such CUHF proves in many ways significantly
227

Spectroscopic analysis of selected silicon ceramics

Leitch, Sam Anthony 17 June 2005 (has links)
<p>Silicon ceramics are popular in both commercial applications and material research. The purpose of this thesis is to present measurements and analysis of four different silicon ceramics: á, â and ã phases of silicon nitride and silicon oxynitride using soft x-ray spectroscopy, which analyses the electronic structure of materials by measuring the absorption and emission of x-ray radiation. Absorption and emission spectra of these materials are presented, many of which have not be previously documented. The results are compared to model spectra and together they provide information about the electronic structure of the material.</p><p>Assignments of emission features to element, orbital, and site symmetry are performed for each material. Combinations of silicon and nitrogen emission spectra provide insight into the strained bonding structure of nitrogen. It is concluded that p-dð interaction plays a role in the bonding arrangement of nitrogen and oxygen sites within these structures. The emission features of non-equivalent silicon sites within ã-Si3N4 are identified, which represents some of the first analysis of same element, non-equivalent sites in a material.</p><p>Silicon absorption and emission spectra were plotted on the same energy scale to facilitate measurement of the band gap. Since previously measured band gaps are not well represented in literature, the measured band gaps were compared to values predicted using DFT calculations. The band gap values are in reasonable agreement to calculated values, but do not vary as widely as predicted.</p>
228

Theoretical Investigations of Pi-Pi and Sulfur-Pi Interactions and their Roles in Biomolecular Systems

Tauer, Anthony Philip 28 November 2005 (has links)
The study of noncovalent interactions between aromatic rings and various functional groups is a very popular topic in current computational chemistry. The research presented in this thesis takes steps to bridge the gap between theoretical prototypes and real-world systems. The non-additive contributions to the interaction energy in stacked aromatic systems are measured by expanding the prototype benzene dimer into trimeric and tetrameric systems. We show that the three- and four-body interaction terms generally do not contribute significantly to the overall interaction energy, and that the two-body terms are essentially the same as in the isolated dimer. The sulfur-pi interaction is then studied by using the hydrogen sufide-benzene dimer as a prototype system for theoretical predictions. We obtain higly-accurate potential energy curves, as well as an interaction energy extrapolated to the complete basis set limit. Energy decomposition analysis using symmetry-adapted perturbation theory shows that the sulfur-pi interaction is primarily electrostatic in nature. These theoretical results are then compared to an analysis of real sulfur-pi contacts found by searching protein structures in the Brookhaven Protein DataBank. We find that the most frequently seen configuration does not correspond to the theoretically predicted equilibrium for sydrogen sulfide-benzene, but instead to a configuration that suggests an alkyl-pi interaction involving the carbon adjacent to the sulfur atom. We believe our findings indicate that environmental effects within proteins are altering the energetics of the sulfur-pi interaction so that other functional groups are preferred for interacting with the aromatic ring.
229

Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures

Williams, Michael Eric 15 May 2009 (has links)
In thiswork we present the development of a method for the prediciton of finite temperature elastic and thermodynamic properties of cubic, non-magnetic unary and binary metals from first principles calculations. Vibrational, electronic and anharmonic contributions to the free energy are accounted for while magnetic effects are neglected. The method involves the construction of a free energy surface in volume/temperature space through the use of quasi-harmonic lattice dynamics. Additional strain energy calculations are performed and fit to the derived thermal expansion to present the temperature dependence of single crystal elastic constants. The methods are developed within the framework of density functional theory, lattice dynamics, and finite elasticity. The model is first developed for FCC aluminum and BCC tungsten which demonstrate the validity of the model as well as some of the limitations arising from the approximations made such as the effects of intrinsic anharmonicity. The same procedure is then applied to the B2 systems NiAl, RuAl and IrAl which are considred for high temperature applications. Overall there is excellent correlation between the calculated properties and experimentally tabulated values. Dynamic methods for the prediction of temperature dependent properties are also introduced and a groundwork is laid for future development of a robust method.
230

Quantum Monte Carlo Methods For Fermionic Systems: Beyond The Fixed-node Approximation

Dugan, Nazim 01 August 2010 (has links) (PDF)
Developments are made on the quantum Monte Carlo methods towards increasing the precision and the stability of the non fixed-node projector calculations of fermions. In the first part of the developments, the wavefunction correction scheme, which was developed to increase the precision of the diusion Monte Carlo (DMC) method, is applied to non fixed-node DMC to increase the precision of such fermion calculations which do not have nodal error. The benchmark calculations indicate a significant decrease of statistical error due to the usage of the correction scheme in such non fixed-node calculations. The second part of the developments is about the modifications of the wavefunction correction scheme for having a stable non fixed-node DMC algorithm for fermions. The minus signed walkers of the non fixed-node calculations are avoided by these modifications in the developed stable algorithm. However, the accuracy of the method decreases, especially for larger systems, as a result of the discussed modifications to overcome the sign instability.

Page generated in 0.0543 seconds