• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation Of The Potential Benefits To Traffic Operations At A Toll Plaza With Express Etc Lanes

Gordin, Eric Anthony 01 January 2004 (has links)
The effectiveness of modifying a conventional toll plaza for implementation of an open road tolling concept with express ETC lanes was evaluated in this thesis. Speed controlled dedicated ETC lanes were replaced with express ETC lanes at the Orlando-Orange County Expressway Authority (OOCEA) University Mainline Toll Plaza. This evaluation was accomplished by utilizing collected field data and simulated scenarios using Toll Plaza SIMulation (TPSIM) software developed by the University of Central Florida. The speed controlled dedicated ETC lanes were located within toll lanes (contained within a toll plaza canopy) with widths ranging between 10 to 14 ft. These types of lanes required all vehicles to reduce their speed from the highway speed to 35 mph. Express ETC lanes (sometimes referenced as open road tolling or non-stop tolling) allow vehicles to pass through the plaza at high speeds. Open road tolling is a concept that employs high speed toll lanes. A before and after study of the University toll plaza was conducted. Benefits in the form of reduced delays and increased capacities were observed when making the comparison between the before and after studies. Since we expect the capacity of an express ETC lane to be greater than the dedicated ETC lanes (due to an increase in free-flow speed), further analysis using equations and car-following theory proved that if the ETC speed was increased, then the capacity would increase as well. Using equations derived from the Highway Capacity Manual (HCM) and car-following theory, the capacity was increased from 2016 to 2314 vph when the ETC speed increased from 31 mph to 65 mph. This indicated an increase in capacity of 14.8 percent (based on the conversion from dedicated to express ETC lanes). The field data was also used as input for TPSIM (a computer simulation model) in order to perform a sensitivity analysis of the express ETC lanes by varying the type of ETC lane, number of approach lanes, and plaza configurations (the addition of an ACM lane) between scenarios. Results that were observed during the after study were verified using the TPSIM scenarios. Reductions in delays for the entire plaza were observed using the TPSIM model when making similar improvements to the plaza as in the after study. The changes made to the University Mainline Toll Plaza after construction was completed resulted in benefits by reducing delays and increasing the capacity of the toll plaza (by converting dedicated ETC lanes to express ETC lanes and adding an additional A/ETC lane per direction). These benefits were measured using field data and confirmed when performing the TPSIM scenarios. A customer's travel time along the toll facility will be reduced by using the express ETC lanes (since they are not required to decelerate at the toll plaza). In addition, weaving maneuvers downstream of the plaza are no longer required by customers using the express ETC lanes due to the location of the downstream travel lanes in relation to the express ETC lanes. These benefits may have led to changes in the number and percentage of ETC users in each of the toll lanes. Changes in ETC usage in the conventional mixed-use lanes directly impacted the throughput and delays for each of these lanes, since ETC equipped vehicles have a service time of zero seconds. In addition to the operational benefits, other possible benefits for express ETC lanes were identified and recommended for further evaluation and research. The re-distribution of customers at the plaza due to the implementation of open road tolling, in the form of express ETC lanes, was a great benefit to the overall traffic operations for the University Mainline Toll Plaza in Orlando, Florida.
2

Integrity monitoring applied to the reception of GNSS signals in urban environments / Contrôle d’intégrité appliqué à la réception des signaux GNSS en environnement urbain

Salós Andrés, Carlos Daniel 03 July 2012 (has links)
L’intégrité des signaux GNSS est définie comme la mesure de la confiance qui peut être placée dans l’exactitude des informations fournies par le système de navigation. Bien que le concept d’intégrité GNSS a été initialement développé dans le cadre de l’aviation civile comme une des exigences standardisées par l’Organisation de l’Aviation Civile Internationale (OACI) pour l’utilisation du GNSS dans les systèmes de Communication, Navigation, et Surveillance / Contrôle du Trafic Aérien (CNS/ATM), un large éventail d’applications non aéronautiques ont également besoin de navigation par satellite fiable avec un niveau d’intégrité garanti. Beaucoup de ces applications se situent en environnement urbain. Le contrôle d’intégrité GNSS est un élément clé des applications de sécurité de la vie (SoL), telle que l’aviation, et des applications exigeant une fiabilité critique comme le télépéage basé sur l’utilisation du GNSS, pour lesquels des erreurs de positionnement peuvent avoir des conséquences juridiques ou économiques. Chacune de ces applications a ses propres exigences et contraintes, de sorte que la technique de contrôle d’intégrité la plus appropriée varie d’une application à l’autre. Cette thèse traite des systèmes de télépéage utilisant GNSS en environnement urbain. Les systèmes de navigation par satellite sont l’une des technologies que l’UE recommande pour le Service Européen de Télépéage Electronique (EETS). Ils sont déjà en cours d’adoption: des systèmes de télépéage pour le transport poids lourd utilisant GPS comme technologie principale sont opérationnels en Allemagne et en Slovaquie, et un système similaire est envisagé en France à partir de 2013. À l’heure actuelle, le contrôle d’intégrité GPS s’appuie sur des systèmes d´augmentation (GBAS, SBAS, ABAS) conçus pour répondre aux exigences de l’OACI pour les opérations aviation civile. C´est la raison pour laquelle cette thèse débute par une présentation du concept d’intégrité en aviation civile afin de comprendre les performances et contraintes des systèmes hérités. La thèse se poursuit par une analyse approfondie des systèmes de télépéage et de navigation GNSS en milieu urbain qui permets de dériver les techniques de contrôle d’intégrité GNSS les plus adaptées. Les algorithmes autonomes de type RAIM ont été choisis en raison de leur souplesse et leur capacité d´adaptabilité aux environnements urbains. Par la suite, le modèle de mesure de pseudodistances est élaboré. Ce modèle traduit les imprécisions des modèles de correction des erreurs d’horloge et d’ephemeride, des retards ionosphériques et troposphériques, ainsi que le bruit thermique récepteur et les erreurs dues aux multitrajets. Les exigences d’intégrité GNSS pour l’application télépéage sont ensuite dérivées à partir de la relation entre les erreurs de positionnement et leur effets dans la facturation finale. Deux algorithmes RAIM sont alors proposés pour l’application péage routier. Le premier est l’algorithme basé sur les résidus de la solution des moindres carrés pondérés (RAIM WLSR), largement utilisé dans l’aviation civile. Seulement, un des principaux défis de l’utilisation des algorithmes RAIM classiques en milieux urbains est un taux élevé d’indisponibilité causé par la mauvaise géométrie entre le récepteur et les satellites. C’est pour cela que un nouvel algorithme RAIM est proposé. Cet algorithme, basé sur le RAIM WLSR, est conçu de sorte à maximiser l’occurrence de fournir un positionnement intègre dans un contexte télépéage. Les performances des deux algorithmes RAIM proposés et des systèmes de télépéage associés sont analysés par simulation dans différents environnements ruraux et urbains. Dans tous les cas, la disponibilité du nouvel RAIM est supérieure à celle du RAIM WLSR. / Global Navigation Satellite Systems (GNSS) integrity is defined as a measure of the trust that can be placed in the correctness of the information supplied by the navigation system. Although the concept of GNSS integrity has been originally developed in the civil aviation framework as part of the International Civil Aviation Organization (ICAO) requirements for using GNSS in the Communications, Navigation, and Surveillance / Air Traffic Management (CNS/ATM) system, a wide range of non-aviation applications need reliable GNSS navigation with integrity, many of them in urban environments. GNSS integrity monitoring is a key component in Safety of Life (SoL) applications such as aviation, and in the so-called liability critical applications like GNSS-based electronic toll collection, in which positioning errors may have negative legal or economic consequences. At present, GPS integrity monitoring relies on different augmentation systems (GBAS, SBAS, ABAS) that have been conceived to meet the ICAO requirements in civil aviation operations. For this reason, the use of integrity monitoring techniques and systems inherited from civil aviation in non-aviation applications needs to be analyzed, especially in urban environments, which are frequently more challenging than typical aviation environments. Each application has its own requirements and constraints, so the most suitable integrity monitoring technique varies from one application to another. This work focuses on Electronic Toll Collection (ETC) systems based on GNSS in urban environments. Satellite navigation is one of the technologies the directive 2004/52/EC recommends for the European Electronic Toll Service (EETS), and it is already being adopted: toll systems for freight transport that use GPS as primary technology are operational in Germany and Slovakia, and France envisages to establish a similar system from 2013. This dissertation begins presenting first the concept of integrity in civil aviation in order to understand the objectives and constraints of existing GNSS integrity monitoring systems. A thorough analysis of GNSS-based ETC systems and of GNSS navigation in urban environments is done afterwards with the aim of identifying the most suitable road toll schemes, GNSS receiver configurations and integrity monitoring mechanisms. Receiver autonomous integrity monitoring (RAIM) is chosen among other integrity monitoring systems due to its design flexibility and adaptability to urban environments. A nominal pseudorange measurement model suitable for integrity-driven applications in urban environments has been calculated dividing the total pseudorange error into five independent error sources which can be modelled independently: broadcasted satellite clock corrections and ephemeris errors, ionospheric delay, tropospheric delay, receiver thermal noise (plus interferences) and multipath. In this work the fault model that includes all non-nominal errors consists only of major service failures. Afterwards, the GNSS integrity requirements are derived from the relationship between positioning failures and toll charging errors. Two RAIM algorithms are studied. The first of them is the Weighted Least Squares Residual (WLSR) RAIM, widely used in civil aviation and usually set as the reference against which other RAIM techniques are compared. One of the main challenges of RAIM algorithms in urban environments is the high unavailability rate because of the bad user/satellite geometry. For this reason a new RAIM based on the WLSR is proposed, with the objective of providing a trade-off between the false alarm probability and the RAIM availability in order to maximize the probability that the RAIM declares valid a fault-free position. Finally, simulations have been carried out to study the performance of the different RAIM and ETC systems in rural and urban environments. In all cases, the availability obtained with the novel RAIM improve those of the standard WLSR RAIM.
3

An analysis of implementing open road tolling through the Gauteng Freeway Improvement Project (GFIP)

Malahleha, Thabiso 03 1900 (has links)
Thesis (MDF) -- Stellenbosch University, 2011. / ENGLISH ABSTRACT: The aim of this research report is to analyse the feasibility of Open Road Tolling (ORT) and its development in South Africa through the Gauteng Freeway Improvement Project (GFIP). ORT represents the next generation of Electronic Toll Collection (ETC) and this research report will assess to what extent the GFIP scheme is in line with other comparable tolling schemes; and is the institutional environment amenable to ORT. This will allow one to gauge the feasibility of the scheme and its potential for acceptability and success. The research report outlines the number of risks that come with an ORT scheme and these include amongst others collection risk, enforcement, technology, privacy and public acceptance. The success of the GFIP will largely be determined by how well these risks are mitigated and how the benefits can be marketed to the users. The literature review illustrates that whether road pricing schemes have failed to move forward, have been implemented, are currently under development, or still in the planning stage as a concept there are several consistent lessons and critical success factors one should apply when structuring a scheme. In the discussions with stakeholders, the following conclusions with regards to the feasibility of ORT and its development in South Africa were as follows: - The factors which need to be addressed include political risk, effective marketing of the scheme to the public, obtaining political will and support, building trust between the scheme developer and the user, managing perceptions and acknowledgement of the fact that the scheme will need to prove itself over time. - Inadequate demonstration - Incorporating interoperability yields benefits in terms in terms of network externalities, the ability to use a single transponder for multiple tolling plazas and points, along with the potential for alternative uses for the transponder. - ORT as a viable solution for the GFIP is feasible from a technical point in that it’s the only way in which one can collect tolls from a high volume network and not cause disruptions in the flow of traffic. However, there are a number of persistent residual risks that SANRAL cannot entirely mitigate and some fall under the realm of political risk. - While SANRAL has applied best practice principles in structuring the GFIP with the aim of providing value for money for the user and as far as possible tackling the issue of affordability, there are certain realities, such as the recent global financial crisis, the infrastructure backlog of the country, users paying for roads which were free and challenges with overall service delivery which place a strain on the legitimacy of the GFIP ORT scheme.
4

Location privacy in automotive telematics

Iqbal, Muhammad Usman, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2009 (has links)
The convergence of transport, communication, computing and positioning technologies has enabled a smart car revolution. As a result, pricing of roads based on telematics technologies has gained significant attention. While there are promised benefits, systematic disclosure of precise location has the ability to impinge on privacy of a special kind, known as location privacy. The aim of this thesis is to provide technical designs that enhance the location privacy of motorists without compromising the benefits of accurate pricing. However, this research looks beyond a solely technology-based solution. For example, the ethical implications of the use of GPS data in pricing models have not been fully understood. Likewise, minimal research exists to evaluate the technical vulnerabilities that could be exploited to avoid criminal or financial penalties. To design a privacy-aware system, it is important to understand the needs of the stakeholders, most importantly the motorists. Knowledge about the anticipated privacy preferences of motorists is important in order to make reasonable predictions about their future willingness to adopt these systems. There is limited research so far on user perceptions regarding specific payment options in the uptake of privacy-aware systems. This thesis provides a critical privacy assessment of two mobility pricing systems, namely electronic tolls and mobility-priced insurance. As a result of this assessment, policy recommendations are developed which could support a common approach in facilitating privacy-aware mobility-pricing strategies. This thesis also evaluates the existing and potential inferential threats and vulnerabilities to develop security and privacy recommendations for privacy-aware pricing designs for tolls and insurance. Utilising these policy recommendations and analysing user-perception with regards to the feasibility of sustaining privacy , and willingness to pay for privacy, two privacy-aware mobility pricing designs have been presented which bridge the entire array of privacy interests and bring them together into a unified approach capable of sustaining legal protection as well as satisfying privacy requirements of motorists. It is maintained that it is only by social and technical analysis working in tandem that critical privacy issues in relation to location can be addressed.
5

Localisation et transmissions sécurisées pour la communication Véhicule à Infrastructure (V2I) : Application au service de télépéage ITS-G5 / Localization and secure transmissions for Vehicle to Infrastructure communication (V2I) : Application to the electronic toll service using the ITS-G5 technology

Randriamasy, Malalatiana 24 May 2019 (has links)
La localisation précise des véhicules et la sécurité des échanges sont deux grands axes qui font la fiabilité des services fournis dans les systèmes de transport intelligent. Ces dernières années, elles font l’objet de nombreux projets de recherche pour des champs d’application divers. Dans cette thèse, le contexte d’application est la réalisation d’un service de télépéage utilisant la technologie ITS-G5. Cette technologie de communication sans-fil permet dans un premier temps le partage des informations de sécurité routière entre les véhicules (V2V), le véhicule et l’infrastructure (V2I). Dans cette thèse, on propose une architecture permettant d’échanger des transactions de télépéage utilisant les équipements communicants en ITS-G5 embarqués dans les véhicules connectés et les unités bord de route (UBR) de l’infrastructure. Les problématiques de nos travaux de recherche se concentrent sur la méthode de localisation des véhicules ayant effectué la transaction afin de pouvoir la valider et sur la sécurité de l’architecture proposée pour assurer l’échange de cette transaction. Afin de bien localiser les véhicules lors du passage au péage, notre approche propose la compréhension de la cinématique du véhicule par une modélisation adéquate à partir des données recueillies dans les messages coopératifs (CAM : Cooperative Awareness Message) en approche du péage. Cela améliorera les informations de géolocalisation déjà présentes. Notre objectif est d’arriver à une précision de moins d’un mètre pour distinguer 2 véhicules adjacents. D’autre part, le protocole de sécurité proposé permet d’assurer l’authentification des équipements participant à l’échange et à la validation de la transaction, l’intégrité des données échangées ainsi que la confidentialité des échanges compte tenu du contexte de communication sans-fil et de la sensibilité des données échangées. Une preuve de concept de la solution de télépéage utilisant la technologie ITS-G5 est développée et intègre nos deux contributions. / The precise localization of vehicles and the security of communication are requirements that make almost of the services provided in intelligent transport systems (ITS) more reliable. In recent years, they have been the subject of numerous research projects for various fields of application. In this thesis, the context is the development of an electronic toll service using the ITS-G5 technology. This wireless communication technology initially allows the sharing of traffic safety information between vehicles (V2V), vehicle and infrastructure (V2I). In our work, we propose a tolling application using equipment operating in ITS-G5 embedded in the connected vehicles and roadside units. For this, ensuring both precise geolocation of the vehicles and security of communication are required to validate the transaction.In order to properly locate the vehicles during the toll crossing, our approach is based on the understanding of the kinematics of the vehicle through a suitable modeling from the data collected in the cooperative messages (called CAM: Cooperative Awareness Message). This approach aims to improve the geolocation information already present in the message. Our goal is to achieve vehicle localization with an accuracy lower than one meter to distinguish two adjacent vehicles. On the other hand, the proposed tolling protocol ensures the authentication of the equipment or entities involved in the exchange and the validation of the transaction, the integrity of the transmitted data as well as the confidentiality of the communication. In this way, we take into account the context of the wireless communication and the sensitivity of the exchanged data. Our two contributions are integrated in the implemented Proof of Concept of the tolling application using the ITS-G5 technology.
6

Traffic Safety Assessment of Different Toll Collection Systems on Expressways Using Multiple Analytical Techniques

Abuzwidah, Muamer 01 January 2014 (has links)
Traffic safety has been considered one of the most important issues in the transportation field. Crashes have caused extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence. With these consistent efforts, both fatalities and fatality rates from road traffic crashes in many countries have been steadily declining over the last ten years. Nevertheless, according to the World Health Organization, the world still lost 1.24 million lives from road traffic crashes in the year of 2013. And without action, traffic crashes on the roads network are predicted to result in deaths of around 1.9 million people, and up to 50 million more people suffer non-fatal injuries annually, with many incurring a disability as a result of their injury by the year 2020. To meet the transportation needs, the use of expressways (toll roads) has risen dramatically in many countries in the past decade. In fact, freeways and expressways are considered an important part of any successful transportation system. These facilities carry the majority of daily trips on the transportation network. Although expressways offer high level of service, and are considered the safest among other types of roads, traditional toll collection systems may have both safety and operational challenges. The traditional toll plazas still experience many crashes, many of which are severe. Therefore, it becomes more important to evaluate the traffic safety impacts of using different tolling systems. The main focus of the research in this dissertation is to provide an up-to-date safety impact of using different toll collection systems, as well as providing safety guidelines for these facilities to promote safety and enhance mobility on expressways. In this study, an extensive data collection was conducted that included one hundred mainline toll plazas located on approximately 750 miles of expressways in Florida. Multiple sources of data available online maintained by Florida Department of Transportation were utilized to identify traffic, geometric and geographic characteristics of the locations as well as investigating and determination of the most complete and accurate data. Different methods of observational before-after and Cross-Sectional techniques were used to evaluate the safety effectiveness of applying different treatments on expressways. The Before-After method includes Naive Before-After, Before-After with Comparison Group, and Before-After with Empirical Bayesian. A set of Safety Performance Functions (SPFs) which predict crash frequency as a function of explanatory variables were developed at the aggregate level using crash data and the corresponding exposure and risk factors. Results of the aggregate traffic safety analysis can be used to identify the hazardous locations (hot spots) such as traditional toll plazas, and also to predict crash frequency for untreated sites in the after period in the Before-After with EB method or derive Crash Modification Factors (CMF) for the treatment using the Cross-Sectional method. This type of analysis is usually used to improve geometric characteristics and mainly focus on discovering the risk factors that are related to the total crash frequency, specific crash type, and/or different crash severity levels. Both simple SPFs (with traffic volume only as an explanatory variable) and full SPFs (with traffic volume and additional explanatory variable(s)) were used to estimate the CMFs and only CMFs with lower standard error were recommended. The results of this study proved that safety effectiveness was significantly improved across all locations that were upgraded from Traditional Mainline Toll Plazas (TMTP) to the Hybrid Mainline Toll Plazas (HMTP) system. This treatment significantly reduced total, Fatal-and-Injury (F+I), and Rear-End crashes by 47, 46 and 65 percent, respectively. Moreover, this study examined the traffic safety impact of using different designs, and diverge-and-merge areas of the HMTP. This design combines either express Open Road Tolling (ORT) lanes on the mainline and separate traditional toll collection to the side (design-1), or traditional toll collection on the mainline and separate ORT lanes to the side (design-2). It was also proven that there is a significant difference between these designs, and there is an indication that design-1 is safer and the majority of crashes occurred at diverge-and-merge areas before and after these facilities. However, design-2 could be a good temporary design at locations that have low prepaid transponder (Electronic Toll Collection (ETC)) users. In other words, it is dependent upon the percentage of the ETC users. As this percentage increases, more traffic will need to diverge and merge; thus, this design becomes riskier. In addition, the results indicated significant relationships between the crash frequency and toll plaza types, annual average daily traffic, and drivers* age. The analysis showed that the conversion from TMTP to the All-Electronic Toll Collection (AETC) system resulted in an average reduction of 77, 76, and 67 percent for total, F+I, and Property Damage Only (PDO) crashes, respectively; for rear end and Lane Change Related (LCR) crashes the average reductions were 81 and 75 percent, respectively. The conversion from HMTP to AETC system enhanced traffic safety by reducing crashes by an average of 23, 29 and 19 percent for total, F+I, and PDO crashes; also, for rear end and LCR crashes, the average reductions were 15 and 21 percent, respectively. Based on these results, the use of AETC system changed toll plazas from the highest risk sections on Expressways to be similar to regular segments. Therefore, it can be concluded that the use of AETC system was proven to be an excellent solution to several traffic operations as well as environmental and economic problems. For those agencies that cannot adopt the HMTP and the AETC systems, improving traffic safety at traditional toll plazas should take a priority. This study also evaluates the safety effectiveness of the implementation of High-Occupancy Toll lanes (HOT Lanes) as well as adding roadway lighting to expressways. The results showed that there were no significant impact of the implementation of HOT lanes on the roadway segment as a whole (HOT and Regular Lanes combined). But there was a significant difference between the regular lanes and the HOT lanes at the same roadway segment; the crash count increased at the regular lanes and decreased at the HOT lanes. It was found that the total and F+I crashes were reduced at the HOT lanes by an average of 25 and 45 percent, respectively. This may be attributable to the fact that the HOT lanes became a highway within a highway. Moreover adding roadway lighting has significantly improved traffic safety on the expressways by reducing the night crashes by approximately 35 percent. Overall, the proposed analyses of the safety effectiveness of using different toll collection systems are useful in providing expressway authorities with detailed information on where countermeasures must be implemented. This study provided for the first time an up-to-date safety impact of using different toll collection systems, also developed safety guidelines for these systems which would be useful for practitioners and roadway users.
7

Inovační aspekty elektronickeho výběru mýtného v ČR / Innovation Aspects of the Electronic Toll System in the Czech Republic

Šindelářová, Jana January 2008 (has links)
This thesis deals with the innovation of information system (IS) as a decision problem. The main objective of this thesis is the construction and the application of a method to select an optimal innovation variant of IS in an organisation of any scale. The designed method is based on the conception of the innovation of IS in the methodology "Multidimensional Management and Development of Information System (MMDIS)". The proposed selection method (Method of Innovation Modules based on MMDIS - MIM) is intended to serve mainly for decision-making on a strategic level. The IS structure is mapped in accordance with the MMDIS methodology. Innovation aspects are derived from two approaches: innovation aspects based on the MMDIS principles ("module of principles" - e.g. integration, flexibility, standardisation, measurability) and innovation aspects based on the IS dimensions defined in MMDIS methodology ("module of dimensions" - e.g. software, hardware, processes and functions, finances). The proposal method enforces a systematic approach to evaluation of the innovation variants, ensuring that the innovation aspects (the principles and the dimensions) are aligned with key requirements. As an example, this method is applied to an existing electronic toll system operated in the Czech Republic. Basic innovation variants of the electronic toll system are described - the microwave, the satellite and the hybrid toll system. Case studies from the Czech Republic, Austria and Germany are used for support the proposed innovation variants, as well as evaluation of variants. The principles and the dimensions form a framework for description and evaluation of the telematics, of the electronic toll and of the innovation variants of the electronic toll. The variants are compared within the framework of refined principles and dimensions, the optimal variant is proposed. The used evaluation parameters are a result of an analysis of published studies and specific toll system technical designs. The Method of Innovation Modules was constructed on the basis of MMDIS methodology and demonstrated by application in an example scenario (electronic toll). The key result of the proposed method is the comprehensive structured map of available system innovation opportunities.

Page generated in 0.1633 seconds