• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of electrical and thermal pre-treatment on mass transport in biological tissue / Effets de prétraitement électrique et thermique sur le transport de la matière dans les tissus biologiques

Mahnic̆-Kalamiza, Samo 17 December 2015 (has links)
Le champ électrique d'une puissance suffisante peut provoquer une augmentation de conductivité et perméabilité de la membrane cellulaire. L'effet est connu comme l'électroporation, attribuée à la création de voies aqueuses dans la membrane. Quantifier le transport de la matière dans le cadre d'électroporation est un objectif important. Comprendre ces processus a des ramifications dans l’extraction du jus ou l’extraction sélective des composés de cellules végétales, l'amélioration de l'administration de médicaments, et des solutions aux défis environnementaux. Il y a un manque de modèles qui pourraient être utilisés pour modéliser le transport de la matière dans les structures complexes (tissus biologiques) par rapport à l'électroporation. Cette thèse présente une description mathématique théorique (un modèle) pour étudier le transport de la matière et le transfert de la chaleur dans tissu traité par l’électroporation. Le modèle a été développé en utilisant les lois de conservation et de transport et permet le couplage des effets de l'électroporation sur la membrane des cellules individuelles au transport de la matière ou la chaleur dans le tissu. Une solution analytique a été trouvée par une simplification, mais le modèle peut être étendu avec des dépendances fonctionnelles supplémentaires et résolu numériquement. La thèse comprend cinq articles sur l'électroporation dans l'industrie alimentaire, la création de modèle pour le problème de diffusion, la traduction du modèle au problème lié à l’expression de jus, validation du modèle, ainsi que des suggestions pour une élaboration future du modèle. Un chapitre supplémentaire est dédié au transfert de la chaleur dans tissu. / An electric field of sufficient strength can cause an increase of conductivity and permeability of cell membrane. Effect is known as electroporation and is attributed to creation of aqueous pathways in the membrane. Quantifying mass transport in connection with electroporation of biological tissues is an important goal. The ability to fully comprehend transport processes has ramifications in improved juice extraction and improved selective extraction of compounds from plant cells, improved drug delivery, and solutions to environmental challenges. While electroporation is intensively investigated, there is a lack of models that can be used to model mass transport in complex structures such as biological tissues with relation to electroporation. This thesis presents an attempt at constructing a theoretical mathematical description – a model, for studying mass (and heat) transfer in electroporated tissue. The model was developed employing conservation and transport laws and enables coupling effects of electroporation to the membrane of individual cells with the resulting mass transport or heat transfer in tissue. An analytical solution has been found though the model can be extended with additional dependencies to account for the phenomenon of electroporation, and solved numerically. Thesis comprises five peer-reviewed papers describing electroporation in the food industry, model creation for the problem of diffusion, translation of the model to the mathematically-related case of juice expression, model validation, as well as suggestions for possible future development, extension, and generalization. An additional chapter is dedicated to transfer of heat in tissue.

Page generated in 0.0596 seconds