Spelling suggestions: "subject:"elektronendichte"" "subject:"elektronendichten""
1 |
Synthese und Testung von Aza-Peptiden als Cystein- und Aspartat-Protease-Inhibitoren sowie Kristallisation und Elektronendichtebestimmung von Aziridin-, Epoxid- und Michael-Akzeptor substituierten BausteinenPfeuffer, Thomas. Unknown Date (has links)
Univ., Diss., 2010--Würzburg.
|
2 |
Coupled electron and nuclear dynamics in model systemsErdmann, Marco. Unknown Date (has links) (PDF)
University, Diss., 2004--Würzburg.
|
3 |
Synthese und Testung von Aza-Peptiden als Cystein- und Aspartat-Protease Inhibitoren sowie Kristallisation und Elektronendichtebestimmung von Aziridin-, Epoxid- und Michael-Akzeptor substituierten Bausteinen / Synthesis and Testing of Aza-Peptides as Cysteine- and Aspartate-Protease Inhibitors as well as Crystallisation and Electron Density Determination of Aziridine-, Epoxide- and Michael Acceptor Substituted Building BlocksPfeuffer, Thomas January 2009 (has links) (PDF)
Proteasen als Peptid hydrolysierende Enzyme spielen eine essenzielle Rolle im Verlauf verschiedenster Erkrankungen, wie z.B. SARS, Malaria oder Alzheimer. Die irreversible Hemmung dieser Proteasen gilt somit als neues Konzept in der Wirkstoffentwicklung. Dabei ist es von immenser Bedeutung, die Interaktion der beteiligten Proteine zu kennen, um einen geeigneten Wirkstoff zu entwickeln. Ein Ziel dieser Arbeit war es, kleine elektrophile Bausteine wie Aziridine, Epoxide oder Akzetor-substituierte Olefine zu synthetisieren und zu kristallisieren. In Zusammenarbeit mit der Arbeitsgruppe von Prof. Luger (FU Berlin) konnten mittels hochauflösender Röntgenstrukturanalyse bei ulta-niedrigen Temperaturen die Elektronendichten von mehreren Protease-Inhibitor-Modell-Verbindungen bestimmt werden. Ein weiteres Ziel dieser Arbeit war ausgehend von bekannten aktiven Aziridinen, Epoxiden oder Michael-Systemen, azapeptidische Analoga darzustellen, welche durch ihre Hydrazid-Verknüpfung eine bessere Hydrolysebeständigkeit gegenüber enzymatischem Abbau bieten. Alle synthetisierten Verbindungen wurden in fluorimetrischen Enzym-Assays an acht Protesen (Cathepsin B, Cathepsin L, Falcipain 2, Rhodesain, SARS-CoV-Mpro, SARS-COV-plpro, SAP2 and Cathepsin D)getestet und die Hemmkonstanten bestimmt / Proteases as peptide hydrolyzing enzymes play essential roles in the pathogenesis of various deseases, e.g. SARS, Malaria or Alzheimer's desease. The irreversible inhibition of those enzymes is considered as a new concept in drug design. Therefore it is fundamental for the developement of a suitable drug to know the interactions of the involved proteins. One aim of this thesis is to synthesize and to crystallize small electrophilic building blocks like aziridines, oxiranes or acceptor substituted olefins. In collaboration with Prof. Luger's group (FU Berlin) the topological electron density of multible protease inhibitor model compounds was derived using ulta-high resolution x-ray diffraction at ulta-low temperature. Another aim of this thesis is to synthesize azapeptidic analogues of known aziridin, oxirane and Michael-acceptor based inhibitors which should offer a better stability towards hydrolysis and cannot decomposed this way by enzymatic breakdown. All of the synthesized compounds were tested against eight proteases (Cathepsin B, Cathepsin L, Falcipain 2, Rhodesain, SARS-CoV-Mpro, SARS-COV-plpro, SAP2 and Cathepsin D) using a flourimetric assay.
|
4 |
Experimental charge density studies of highly polar bonds / Experimentelle Bestimmung der Elektronendichteverteilung Stark Polarer BindungenKocher, Nikolaus January 2003 (has links) (PDF)
The main aim of this work was the classification of highly polar E–N (E = Al, Si, P) and Li–E’ (E’ = C, N, O) bonds in terms of ionic (closed-shell) or covalent (shared) interactions. To answer this question the experimentally determined electron density was analyzed using Bader’s theory of ‘Atoms in Molecules’ (AIM). This allows a quantitative evaluation of properties derived from the electron density, such as the Laplacian, the ellipticitiy and the ratio of the highest charge concentration perpendicular to the bond path, to the largest charge depletion along the bonding vector. Most of these properties were monitored along the entire bonding region and not limited to the BCP as in former studies. The analyses are completed by the calculation of the electronic energy densities Hl at the BCPs and the integration of atomic basins also defined within the AIM theory. The electrostatic potential (ESP) was computed from the multipole parameters to reveal preferred reactive sites of the structures under investigation. Apart from that, the multipole formalism was applied to problematic crystal structures in order to open this method for twinned samples or those including disordered groups in the molecule. / Die zentrale Fragestellung der Arbeit war die Klassifizierung der stark polaren Bindungen E–N (E = Al, Si, P) sowie Li–E’ (E’ = C, N, O) im Hinblick auf ionische und kovalente Wechselwirkungen. Um diese Frage zu beantworten wurde die experimentell bestimmte Elektronendichte mit der ‚Atoms in Molecules’ Theorie von Bader analysiert. Sie ermöglicht eine quantitative Auswertung von Eigenschaften wie dem Laplacian, der Elliptizität oder dem Verhältnis der Eigenwerte, die aus der Elektronendichte erhalten werden. Die meisten dieser elektronischen Eigenschaften wurden entlang des gesamten Bindungspfades untersucht; die Analyse war nicht, wie in früheren Arbeiten auf die bindungskritischen Punkte (BCPs) beschränkt. Die Untersuchungen wurden durch die Berechnung der Energiedichte Hl am BCP und die Integration der atomaren Basins vervollständigt. Weiterhin wurde aus den Multipolpopulationen das Elektrostatische Potential bestimmt, um reaktive Zentren der untersuchten Verbindungen zu quantifizieren. Das Multipolmodell wurde auch auf Kristalle mit problematischer Elektronendichteverteilung angewendet, um die Methode für verzwillingte Kristalle bzw. solche mit fehlgeordneten Gruppen zu erschließen.
|
5 |
Theoretical Investigations on the Interactions of Small Compounds with their Molecular Environments / Theoretische Untersuchungen der Wechselwirkungen Kleiner Moleküle mit deren Molekularen UmgebungenSchmidt, Thomas Christian January 2015 (has links) (PDF)
Im ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden für die strukturbasierte Entwicklung neuer Wirkstoffe präsentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor für die Reaktivität des Inhibitors gegenüber der katalytisch aktiven Aminosäure und damit für die Ausbildung einer kovalenten Bindung. Aus diesem Grund wurde diese Geometrie auch für die Optimierung der Substitutionsmusters des Ihnibitors verwendet, um dessen Affinität zum Zielenzyme zu verbessern ohne dass dieser seine Fähigkeit kovalent an das aktive Zentrum zu binden verliert.
Die Optimierung des Substitutionsmuster wurde doch Methode des Molekularen Dockings unterstützt, das diese optimal dazu geeignet sind, Bindungsaffinitäten vorherzusagen, die durch eine Modifikation der chemischen Struktur entstehen.
Eine Auswahl der besten Strukturen wurde anschließend verwendet, um zu überprüfen, ob die veränderten Moleküle noch genügen Reaktivität gegenüber dem Zielprotein aufweisen.
Moleküldynamik Simulationen der neuen Verbindungen haben jedoch gezeigt, dass die veränderten Verbindungen nur so and das Protein binden, dass die Bilung eine kovalenten Bindung zum Enzym nicht mehr möglich ist.
Daher wurden in einem weiteren Schritt die Modellverbindungen weiter modifiziert. Neben Änderungen im Substitutionsmuster wurde auch die chemische Struktur im Kern verändert.
Die Bindungsaffinitäten wurde wieder mittels Docking überprüft. Für die besten Bindungsposen wurden wieder Simulationen zur Moleküldynamik durchgeführt, wobei diesmal die Ausbildung einer kovalenten Bindung zum Enzyme möglich erscheint.
In einer abschließenden Serie von QM/MM Rechnungen unter Berücksichtigung verschiedener Protonierungszustände des Inhibitors und des Proteins konnten Reaktionspfade und zugehörige Reaktionsenergien bestimmt werden. Die Ergebnisse lassen darauf schließen, dass eines der neu entwickelten Moleküle sowohl eine stark verbesserte Bindungsaffinität wie auch die Möglichkeit der kovalenten Bindung an Enzyme aufweist.
Der zweite Teil der Arbeit konzentriert sich auf die Umgebungseinflüsse auf die Elektronenverteilung eines Inhibitormodells. Als Grundlage dient ein vinylsulfon-basiertes Moekül, für das eine experimentell bestimmte Kristallstruktur sowie ein theoretisch berechneter Protein Komplex verfügbar sind.
Ein Referendatensatz für diese Systeme wurde erstellt, indem der Konformationsraum des Inhibitors nach möglichen Minimumsstrukturen abgesucht wurde, welche später mit den Geometrien des Moleküls im Kristall und im Protein verglichen werden konnten. The Geometrie in der Kristallumgebung konnte direkt aus den experimentellen Daten übernommen werden. Rechnungen zum nicht-kovalenten Protein Komplex hingegen haben gezeigt, dass für das Modellsystem mehrere Geometrien des Inhibiors sowie zwei Protonierungszustände für die katalytisch aktiven Aminosäuren möglich sind. Für die Analyse wurden daher alle möglichen Proteinkomplexe mit der Kristallstruktur verglichen. Ebenso wurden Vergleiche mit der Geometrie des isolierten Moleküls im Vakuum sowie der Geometrie in wässriger Lösung angestellt. Für die Geometrie des Moleküls an sich ergab sich eine gute Übereinstimmung für alle Modellsysteme, für die Wechselwirkungen mit der Umgebung jedoch nicht. Die Ausbildung von Dimeren in der Kristallumgebung hat einen stark stablisierenden Effekt und ist einer der Gründe, warum dieser Kristall so gut wie keine Fehlordungen aufweist. In den Proteinkomplexen hingegen ergibt sich eine Abstoßung zwischen dem Inhibitor und einer der katalytisch aktiven Aminosäuren. Als Ursache für diese Abstoßung konnte die Einführung der Methylaminfunktion ausgemacht werden. Vermutlicherweise führt diese strukturelle Änderung auch dazu, dass der Modellinhibitor nicht in der Lage ist, so wie die Leitstruktur K11777 an das aktive Zentrum des Enzyms zu binden. / In the first part of this work, a combination of theoretical methods for the rational design of covalent inhibitor is presented. Starting from the crystal structure of the covalent complex of a lead compound, quantum mechanical and QM/MM calculations were used to derive the exact geometry of the preceeding non-covalent enzyme inhibitor complex. The geometry of the latter mainly determines the reactivity of the inhibitor against its target enzyme concerning the formation of the covalent bond towards an active site residue. Therefore, this geometry was used as starting point for the optimization of the substitution pattern of the inhibitor such as to increase its binding affinity without loosing its ability to covalently bind to the target protein. The optimization of the chemical structure was supported by using docking procedures, which are best suited to estimate binding affinities that arise from the introduced changes. A screening of the novel substitution patterns resulted in a first generation of model compounds which were further tested for their reactivity against the target. Dynamic simulations on the novel compounds revealed that the orientation that compounds adopt within the active site are such that a covalent interaction with the enzyme is no longer possible. Hence, the chemical structure was further modified, including not only changes in the substituents but also within the core of the molecule. Docking experiments have been conducted to assure sufficiently high binding affinities and to obtain the most favored binding poses. Those have then again been used for dynamic simulations which resulted in structures, for which the bond formation process appeared feasible. A final series of QM/MM calculations considering various protonation states was computed to estimate the reaction energies for the covalent attachment of the inhibitor to the enzyme. The theoretical results indicate a reasonable high inhibition potency of the novel compounds.
The second part concentrates on the environmental influences on the electron density of an inhibitor molecule. Therefore, a vinylsulfone-based model compound was selected for which an experimental crystal structure for the pure compound as well as a theoretically determined enzyme-inhibitor complex have been available. To provide reference data for the larger systems, the conformational space of the isolated molecule was screened for favorable geometries which were later compared to those within the crystal and protein surrounding. The geometry of the crystal structure could readily be taken from the experimental data whereas calculations on the protein complex revealed four potential non-covalent complexes exhibiting different arrangements of the molecule within the active site of the protein as well as two possible protonation states of the catalytic dyad. Hence, all four protein complexes have been compared to the crystal structure of the molecule as well as against the more favorable geometries of the isolated molecule being determined within vacuum or aqueous surrounding. Whereas the molecule itself was found to adopt comparable geometries within all investigated environments, the interactions pattern between the crystal surrounding and the protein differed largely from each other. The favorable formation of dimers within the crystal has a strong stabilizing effect and explains the extraordinarily good quality of the crystal. Within the protein however, repulsive forces have been found between the protein and the inhibitor. The origin of the repulsion could be traced back to effect of on of the substituents to the vinyl scaffold. The difference in the chemical structure in comparison to a well known inhibitor might also explain the experimentally found loss of activity for the model compound in comparison to K11777.
|
6 |
S=N versus S+-N- / S=N versus S+-N-Leußer, Dirk January 2002 (has links) (PDF)
The main aim of this thesis was to characterise structurally four sulfur-nitrogen compounds in terms of their experimental electron density distribution: Sulfurdiimide S(NtBu)2 (I), sulfurtriimide S(NtBu)3 (II), methyl(diimido)sulfinic acid H(NtBu)2SMe (III) and methylene-bis(triimido)sulfonic acid CH2{S(NtBu)2(HNtBu)}2 (IV). The electron density was determined by multipole refinements on high-resolution X-ray data at low temperatures. The refined densities were analysed by means of Bader’s theory of ‘Atoms in Molecules’ to get information about the bonding types (shared/ closed shell), bond strengths, and the extent of polarisation. The distributions of the static deformation densities, which already showed the most important electronical features as lone-pairs and bonding densities, were calculated for all compounds. The spatial distributions provided a first impression about the bonding properties. The nitrogen lone-pair densities were found to be inclined towards the electropositive sulfur atoms. In II, III and IV the spatial distributions already suggested sp3 hybridisation of the nitrogen atoms. In I gradual differences between the E/Z and Z/Z oriented NtBu groups were visualised. The charge density distribution was analysed along the bond paths, which showed some of the S,N bonds to be considerably bent. In the central part of the thesis detailed topological analyses of the electron density distributions were performed. All BCPs and the related electronical properties as the electron density, the negative Laplacian, the eigenvalues of the Hessian matrix, and several values, which can be deduced from these, were calculated. Due to the low number of comparable published compounds, internal scaling facilitated by III and IV led to system-specific ranking of the S-N and S-C bonds in terms of bond type (shared vs. closed shell), bond order, and bond strength. To quantify bond polarisation a criterion was developed which relates shifts in the BCPs to electron transfer from the electropositive to the electronegative bonding partner. The distributions of the Laplacian were determined for all S-E (E = N, C) bonds because of their fundamental importance for the classification of atomic interactions. Furthermore, the spatial distribution of the negative Laplacian with respect to all important bonds was determined around the central sulfur and nitrogen atoms. The analyses led to detailed information about the S,N interactions. A calculation of the reactive surfaces where the Laplacian equals zero revealed possible reaction pathways of nucleophilic attacks to the central sulfur atoms. All nitrogen atoms in H(NtBu)2SMe (III) as well as in CH2{S(NtBu)2(HNtBu)}2 (IV) are predominantly sp3 hybridised. The S,N bonds should therefore be formulated as S+–N– single bonds, strengthened and shortened by electrostatic reinforcement. In S(NtBu)2 (I) the sp2 hybridisation of the nitrogen atoms was verified. All topological criteria unearthed the inequality of the formally equivalent S=N double bonds. The differences were assigned to the molecular E/Z conformation in the solid state. Interaction between the in-plane lone-pair density of the nitrogen and the sulfur atom located at the same side causes the non-bonding charge concentration at the sulfur atom to be dislocated into the second S–N bond. The existence of a delocalised 3-centres-2-electrons system within the planar SN2 core was assumed to be formed by non-hybridised p-orbitals. An effective delocalisation was found to be possibly disturbed by a weak intermolecular S...S interaction. The interpretation of the S,N interaction in S(NtBu)3 (II) was not straightforward, since the electron density distribution showed both, indicators for multiple bonding as well as for sp3 hybridisation of the nitrogen atoms, which verifies the formulation of a S+–N– bonding mode. The bonding situation in S(NtBu)3 was identified as an intermediate state between that of a delocalised 4-centres-6-electrons system formed by non-hybridised p-orbitals within the planar SN3 unit and that of a S+–N– system. / Ziel der vorliegenden Arbeit war die strukturelle Charakterisierung von vier für unsere Arbeitsgruppe grundlegenden molekularen Schwefel-Stickstoffverbindungen, sowie deren Elektronendichteverteilung mit experimentellen Mitteln zu bestimmen: Schwefeldiimid S(NtBu)2 (I), Schwefeltriimid S(NtBu)3 (II), Methyl(diimido)sulfin-säure H(NtBu)2SMe (III) und Methylen-bis(triimido)sulfonsäure CH2{S(NtBu)2-(HNtBu)}2 (IV). Die Ergebnisse wurden aus hochauflösenden Röntgenbeugungsexperimenten an Einkristallen bei tiefen Temperaturen mit anschließender Multipolverfeinerung gewonnen. Die so erhaltenen experimentellen Elektronendichteverteilungen wurden einer topologischen Analyse nach dem Bader-Formalismus der ‘Atoms in Molecules’ unterzogen. Ziel dieser Analysen war die Charakterisierung der atomaren Wechselwirkungen innerhalb der Moleküle nach Kriterien wie Bindungstyp (kovalent/ionisch), Bindungsstärke oder Polarisationsgrad. Es wurden die statischen Deformationsdichteverteilungen in allen Verbindungen bestimmt. Diese zeigten, dass die wichtigsten elektronischen Strukturmerkmale modelliert wurden. Die freien Elektronenpaare und Bindungsdichten in den zentralen Einheiten konnten beschrieben werden und ihre Symmetrie lieferte erste Anhaltspunkte für die Klassifizierung der Wechselwirkungen. Die freien Elektronenpaare an den Sticksoffatomen sind durchweg in Richtung des elektropositiven Schwefelatoms orientiert. In II, III und IV lieferte die räumliche Orientierung der freien Elektronenpaare erste Hinweise auf eine mögliche sp3-Hybridisierung der Sticksoffatome. In I wurden die graduellen Unterschiede zwischen den formal äquivalenten NtBu-Gruppen durch ihre unterschiedlichen Deformationsdichteverteilungen verdeutlicht. Des Weiteren wurden die Elektronendichteverteilungen entlang der S-N und S-C Bindungspfade analysiert, was Rückschlüsse auf Spannungen innerhalb der Bindungen erlaubte. Im zentralen Teil der Arbeit wurden die verfeinerten Elektronendichteverteilungen aller vier Verbindungen einer ausführlichen topologischen Analyse unterzogen. Dabei wurden zunächst alle bindungskritischen Punkte sowie die Elektronendichte, der Wert der negativen Laplacefunktion und die Eigenwerte der Hessematrix am kritischen Punkt als auch verschiedene Kriterien, die sich aus diesen Werten ableiten, berechnet. Durch interne Skalierung, sowie Einordnung in die wenigen literaturbekannten Beispiele, wurden die S-N und S-C Bindungen nach Typus (kovalent/ionisch), Bindungsordnung und Stärke klassifiziert. Um Polarisationseffekte zu quantifizieren, wurde ein Kriterium entwickelt, das über die Lage des kritischen Punktes in den S-N Bindungen einen Quotienten definiert, dessen Wert ein Maß für Polarisation infolge eines Elektronendichtetransfers vom elektropositiveren Schwefelatom zum elektronegativeren Stickstoffatom ist. Als wichtigste Größe für die Klassifizierung atomarer Wechselwirkung wurde die Verteilung der Laplacefunktion für alle S-E (E = N, C) Bindungen bestimmt. Sowohl in allen relevanten Ebenenschnitten als auch für die zentralen Einheiten (S, N) in dreidimensionalen Volumina wurde die Laplacefunktion mit hoher Auflösung berechnet. Die Analysen lieferten ein detailliertes Bild der Bindungssituation. Über die Bestimmung der reaktiven Oberfläche als Isofläche konnten mögliche Reaktionswege eines Nucleophils zum elektropositiven Zentrum aufgezeigt werden. Sowohl für die Methyl(diimido)sulfinsäure H(NtBu)2SMe (III) als auch für die Methylen-bis(triimido)sulfonsäure CH2{S(NtBu)2(HNtBu)}2 (IV) ließen die Topologien ausschließlich die Formulierung sp3-hybridisierter Sticksoffatome zu, welche infolge ausgeprägter Polarisation S+–N– Einfachbindungen ausbilden, die durch elektrostatische Rückbindung verstärkt und damit auch verkürzt werden. Im Falle des Schwefeldiimides S(NtBu)2 (I) wurde die sp2-Hybridisierung der Stickstoffatome verifiziert. Die weiteren Kriterien lieferten ein zunächst widersprüchliches Bild der beiden formal äquivalenten S=N Bindungen. Die Unterschiede in den Bindungen lassen sich durch die unterschiedliche Ausrichtung der freien Elektronenpaare an den Stickstoffatomen erklären. Die Wechselwirkung des freien N-Elektronenpaares auf der gleichen Seite wie das S-Elektronepaar mit dem elektropositiven Schwefelatom bewirkt seinerseits die Neigung des S-Paares zur zweiten S–N Bindung. Als zutreffendste Beschreibung der Bindungssituation wurde die Existenz eines delokalisierten 3-Zentren-2-Elektronen Systems in der SN2 Einheit, gebildet aus nicht-hybridisierten p-Orbitalen, vorgeschlagen. Effektive Delokalisation ist möglicherweise durch intermolekulare S...S Wechselwirkungen gestört. Die Beschreibung der S,N Wechselwirkung im Schwefeltriimid S(NtBu)3 (II) bereitete die größten Schwierigkeiten, da sowohl Anzeichen für eine sp3-Hybridisierung der Stickstoffatome als auch Mehrfachbindungscharakteristika gefunden wurden. Die S,N Wechselwirkungen in S(NtBu)3 wurden als Übergangssituation zwischen dem Typus des delokalisierten 4-Zentren-6-Elektronen Systems und dem der Ladungstrennung infolge ausgeprägter Polarisation klassifiziert.
|
7 |
Die Nutzung des GPS zur dreidimensionalen IonosphärenmodellierungDettmering, Denise. January 2003 (has links)
Zugl.: Stuttgart, Univ., Diss., 2003.
|
8 |
Charakterisierung von Plasmen, erzeugt durch Fokussierung von 100 ps Laserpulsen auf FestkörperoberflächenKochan, Natalie. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Chemnitz.
|
9 |
Validation of atmospheric temperature profiles and electron densities derived from CHAMP radio occultation measurements during measurement campaigns at Andøya (69.28°N, 16.02°E)Stolle, Claudia, Lange, Martin, Jacobi, Christoph 04 January 2017 (has links) (PDF)
Several measurement campaigns took place at the ALOMAR observatory at Andøya, Northern Norway during July-November 2001 to validate ionospheric electron density and dry temperature profiles in the troposphere and lower stratosphere derived from radio occultation
measurements of the low earth orbiter satellite CHAMP. For temperature sounding, three balloons are released around GPS satellite occultation events that occurred inbetween a distance of 200 km around Andøya. At altitudes of 7–20 km the CHAMP profile shows a positive mean deviation increasing with height by about 1.5-2 Kelvin/
10 km overlayed with variations of ±1 K when compared to the radiosonde. Taking into account the previous and following radiosonde ascents the mean deviation seems to be of systematic nature due to the occultation principle or the retrieval algorithm and the variations are
related to geographical variations of temperature and to the horizontal averaging by the radio occultation technique. During the period from mid July to mid August, four occultations for ionospheric soundings occurred. The values of the F2 layer calculated from the CHAMP derived electron density profiles are compared to the readings of the Alomar and Tromsø ionosondes for these times. Comparison shows that using the radio occultation technique electron densities of the maximum value layer are calculated inbetween the same order of magnitude as the ionosondes measurements, however, they overestimate it in the cases discussed here. / Zur Validierung von Elekronendichte- und Temperaturprofilen, abgeleitet aus Radiookkultationsmessungen von CHAMP wurden im Juli-November 2001 mehrere Messkampagnen am ALOMAR Institut auf Andøya, Nordnorwegen durchgeführt. Zur Temperatursondierung wurden drei aufeinanderfolgende Radiosonden um den Zeitpunkt von Okkultationsereignissen im Umkreis von weniger als 200 km gestartet. Das hier diskutierte Temperaturprofil von CHAMP zeigt im Höhenbereich 7-20 km eine mit der Höhe zunehmende positive Abweichung von ca. 1,5-2 K/10 km mit Variationen um ±1 K verglichen mit dem Temperaturprofil der zum Okkultationszeitpunkt fliegenden Radiosonde. Der Vergleich mit den vorhergehenden und nachfolgenden Sondierungen lässt darauf schließen, dass die mittlere Abweichung durch systematische Fehler des Okkultationsverfahrens oder den Retrieval-Algorithmus bedingt sind, die Variationen jedoch durch die örtliche Abweichung und die horizontale Mittelung des Messverfahrens. Während des Zeitraumes von Mitte Juli bis Mitte August ereigneten sich vier Okkultationen zur Sondierung der Ionosphäre. Von den abgeleiteten Elektronendichteprofilen werden jeweils die Werte der F2-Schicht mit den zur gleichen Zeit gemessenen Elektronendichten der Ionosonden auf Andøya und bei Tromsø verglichen. Der Vergleich zeigt, dass mit Hilfe der Radiookkultaktionstechnik die Elektronendichtewerte der F2-Schicht in der gleichen Größenordnung berechnet, in diesen konkreten Fällen jedoch überschätzt werden.
|
10 |
Die Charakterisierung schwacher Wechselwirkungen über die Topologie der Elektronendichte und die Strukturchemie der Bis(dimethylsilyl)amide und ansa-Metallocene der Seltenen ErdenSpiegler, Michael O. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--München.
|
Page generated in 0.0537 seconds