• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 13
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elektronenspektroskopie an Cd–freien Pufferschichten und deren Grenzflächen in Cu(In,Ga)(S,Se)2 Dünnschichtsolarzellen

Erfurth, Felix January 2010 (has links) (PDF)
Die in dieser Arbeit untersuchten Solarzellen auf Basis des Verbindungshalbleiters Cu(In,Ga)(S,Se)2 sind zur Zeit das vielversprechendste Materialsystem im Bereich der Dünnschichtfotovoltaik. Um damit möglichst hohe Wirkungsgrade zu erreichen, ist eine CdS–Pufferschicht notwendig, welche aufgrund ihrer Toxizität und des schlecht integrierbaren, nasschemischen Abscheideprozesses durch alternative Pufferschichten ersetzt werden soll. Im Rahmen dieser Arbeit wurden solche Cd–freien Pufferschichten in Chalkopyrit–Dünnschichtsolarzellen untersucht. Dabei wurde insbesondere deren Grenzfläche zum Absorber charakterisiert, da diese eine wesentliche Rolle beim Ladungsträgertransport spielt. Die hier untersuchten (Zn,Mg)O–Schichten stellen ein vielversprechendes Materialsystem für solche Cd–freien Pufferschichten dar. Durch den Einbau von Magnesium können die elektronischen Eigenschaften der eigentlichen ZnO–Schicht an den Absorber angepasst werden, was zu deutlich höheren Wirkungsgraden führt. Als Hauptgrund geht man dabei von einer besseren Leitungsbandanpassung an der Grenzfläche aus, welche allerdings bisher nur grob anhand der Position des Valenzbandmaximums an der Oberfläche und der optischen Volumenbandlücke abgeschätzt werden konnte. In dieser Arbeit wurde diese Grenzfläche daher mittels Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie untersucht, wobei durch die Kombination beider Methoden die Valenz– und Leitungsbandpositionen direkt bestimmt werden konnten. Es wurde gezeigt, dass der Bandverlauf an der Grenzfläche tatsächlich durch die Änderung des Mg–Gehalts der (Zn,Mg)O–Schichten optimiert werden kann, was eine wichtige Voraussetzung für einen möglichst verlustarmen Ladungstransport ist. Im Fall von reinem ZnO wurde ein „cliff“ (Stufe nach unten) beobachtet, welches mit steigendem Mg–Gehalt abnimmt schließlich ganz verschwindet. Die weitere Erhöhung des Mg–Gehalts führt zur Bildung eines „spike“ (Stufe nach oben). Dass es sich bei einer solchen Stufe nicht um die abrupte Änderung des Bandverlaufs an einer „idealen“, scharf definierten Grenzfläche handelt, haben die vorliegenden Untersuchungen der chemischen Struktur gezeigt. Infolge der dabei beobachteten Durchmischungseffekte bildet sich eine sehr komplexe Grenzfläche mit endlicher Breite aus. So wurde bei der Deposition der (Zn,Mg)O–Schichten die Bildung von In–O–Verbindungen an der Grenzfläche beobachtet. Im Fall von Zn konnte die Diffusion in den Absorber nachgewiesen werden, wodurch es dort zur Bildung von ZnS kommt. Im weiteren Verlauf dieser Arbeit wurde die Grenzfläche zwischen der (Zn,Mg)O–Pufferschicht und CuInS2–Absorbern untersucht. Durch ihre höhere Bandlücke im Vergleich zu den oben untersuchten Cu(In,Ga)(S,Se)2–Absorbern erhofft man sich eine höhere Leerlaufspannung und dadurch bessere Wirkungsgrade. Bisher liegt dieser Leistungsanstieg allerdings unter den zu erwartenden Werten, wofür eine schlechte Anpassung des Leitungsbandverlaufs an die herkömmliche CdS–Pufferschicht verantwortlich gemacht wird. Gerade für dieses Materialsystem scheint sich daher (Zn,Mg)O als Pufferschicht anzubieten, um die Bandanpassung an der Grenzfläche zu optimieren. Bei den in dieser Arbeit durchgeführten Untersuchungen an dieser Grenzfläche konnten ebenfalls Durchmischungsprozesse beobachtet werden. Zusätzlich wurde gezeigt, dass auch bei diesem Materialsystem der Bandverlauf an der Grenzfläche durch die Variation des Mg–Gehalts angepasst werden kann. Insgesamt konnte so für beide Absorbertypen ein detailliertes Bild der (Zn,Mg)O/Puffer–Grenzfläche gezeichnet werden. Für hinreichend gute Wirkungsgrade von Zellen mit „trocken“ abgeschiedenen Pufferschichten ist in den meisten Fällen eine zusätzliche, nasschemische Vorbehandlung des Absorbers notwendig, deren Einfluss auf die Absorberoberfläche ebenfalls in dieser Arbeit untersucht wurde. Dabei hat sich gezeigt, dass durch eine solche Behandlung das auf der Oberfläche angereicherte Natrium vollständig entfernt wird, was eine deutliche Steigerung desWirkungsgrades zur Folge hat.Weitere Untersuchungen führten zu dem Ergebnis, dass eine solche Reinigung der Absorberoberfläche auch durch den Prozess der Sputterdeposition selbst hervorgerufen werden kann. So kommt es neben der Ablagerung des Schichtmaterials zu deutlichem Materialabtrag von der Absorberoberfläche, wodurch diese von Adsorbaten und von auf der Oberfläche sitzenden Oxidverbindungen gereinigt wird. Untersuchungen an Absorbern, welche in einem Cd2+–haltigen Bad vorbehandelt wurden, haben gezeigt, dass der dabei abgeschiedene CdS/Cd(OH)2–Film ebenfalls fast vollständig während der Sputterdeposition entfernt wird. Abschließend wurden auf In2S3–basierende Pufferschichten charakterisiert, welche aufgrund ihrer bisher erreichten hohen Wirkungsgrade eine weitere Alternative zu CdS–Puffern darstellen. Hier wurde an der Grenzfläche zum Absorber eine starke Diffusion der Cu–Atome in die Pufferschicht hinein beobachtet, wodurch es zur Bildung von CuInS2–Phasen kommt. Messungen an bei verschiedenen Temperaturen abgeschiedenen Schichten haben gezeigt, dass diese Diffusion durch hohe Temperaturen zusätzlich verstärkt wird. Gleichzeitig konnte auch die Diffusion von Ga–Atomen nachgewiesen werden, welche allerdings wesentlich schwächer ausfällt. Analog zu den vorangegangenen Ergebnissen konnte somit auch bei diesem Materialsystem die Ausbildung einer sehr komplexen Grenzflächenstruktur beobachtet werden. / In this work investigations were accomplished on Cu(In,Ga)(S,Se)2 thin film solar cells, which represent today’s most promising thin film solar cell technology. To obtain high efficiencies a CdS buffer layer is essential in such solar cells. Because of its toxicity and the unfavorable, intermediate wet chemical deposition process, one would like to replace this layer by alternative buffer layers. In the framework of this thesis different Cd–free buffers were investigated. Thereby especially the interface to the chalkopyrite absorber was characterized because of its major role concerning the charge carrier transport. One promising material for such Cd–free buffer layers is (Zn,Mg)O. By doping the actual ZnO–layer with Magnesium, the electronic properties of the layer can be adjusted to that of the absorber layer. This results in higher efficiencies, which is attributed to a better conduction band alignment at the interface. In the past this alignment was only estimated indirectly by other groups by using the position of the valence band maximum at the surface and the optically derived band gap of the bulk material. In this work this interface was investigated by applying photoelectron spectroscopy and inverse photoelectron spectroscopy. With the combination of both methods the positions of both, the valence and conduction band, could be determined directly. It was shown that the band alignment at the interface can indeed be optimized by changing the Mg–content of the (Zn,Mg)O–layers, which is an important requirement for a low–loss charge transport. In the case of pure ZnO–layers a “cliff” (i.e. a downward step) is observed, which becomes smaller and finally vanishes with increasing Mg–content. A further increase of the Mg–content leads to the formation of a “spike” (i.e. an upward step). The investigations of the chemical structure of this interface showed that this step–like behaviour cannot be understood as an abrupt change of the band alignment. The observed intermixing processes form a complex interface structure of finite width. At this interface the formation of In–O bonds has been observed. Furthermore the diffusion of Zn into the absorber could be proved, which causes the formation of ZnS. Moreover the interface between (Zn,Mg)O–layers and CuInS2–absorbers was investigated. For these wide band gap absorbers, a higher open circuit voltage is expected compared to the above–mentioned Cu(In,Ga)(S,Se)2–absorbers, which should give better efficiencies. Up to now this enhancement of the cell performance is much lower than expected, which is attributed to a bad conduction band alignment at the interface to the conventional CdS–buffer layer. Consequently, for this absorber material (Zn,Mg)O seems to be the perfect buffer layer to tailor the band alignment at the absorber/buffer interface. During these investigations also interface diffusion processes were observed that already have been mentioned above. Additionally it was shown that also for this absorber material the band alignment at the interface can be tailored by changing the Mg–content of the buffer layer. Altogether a detailed picture of the absorber/buffer interface could be drawn for both kinds of absorbers. To obtain reasonable cell efficiencies of solar cells with dry deposited buffer layers a wet chemical treatment of the absorber surface is required in most cases. The influence of this treatment on the absorber surface has been investigated in this work as well. It was shown that such a treatment basically removes the sodium from the absorber surface, which causes an distinct enhancement of the cell efficiency. Further investigations led to the conclusion that such a cleaning of the absorber surface can also be caused by the sputter deposition process itself. Besides the deposition of the layer compound a cleaning of the surface occurs due to the removal of adsorbates and oxides sitting at the surface. Investigations on absorbers that have been treated in a Cd2+– containing wet chemical bath showed, that the thereby deposited CdS/Cd(OH)2–film was almost completely removed from the surface, too. Finally buffer layers based on In2S3 were investigated, which is another promising buffer material for those Cd–free solar cells. At this absorber/buffer interface a strong diffusion of Cu– atoms into the buffer layer was observed, accompanied by the formation of CuInS2. Measurements of layers that were prepared at different deposition temperatures showed, that this diffusion is enforced at high temperatures. At the same time the diffusion of Ga–atoms was observed likewise, although it was much weaker. All in all the formation of a very complex interface structure could be demonstrated also for this kind of buffer layer.
2

Elektronenspektroskopie an Übergangsmetallclustern

Hessler, Markus Unknown Date (has links) (PDF)
Würzburg, Univ., Diss., 2006 / Erscheinungsjahr an der Haupttitelstelle: 2005
3

Elektronenspektroskopie an Übergangsmetallclustern / Electron spectroscopy on transition metal clusters

Heßler, Markus January 2005 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zum Magnetismus und der elektronischen Struktur deponierter Cluster der 3d-Übergangsmetalle Fe, Co und Ni durchgeführt. Dabei zeigte sich, dass die Deposition der Cluster in Argon-Dünnfilme nicht nur zur fragmentationsfreien Probenpräparation genutzt werden kann, sondern auch die Untersuchung der Cluster in einer Umgebung mit geringer Wechselwirkung erlaubt. Die Beobachtung des atomaren Co-Multipletts sowie die Übereinstimmung der, mittels XMCD bestimmten, magnetischen Gesamtmomente von Fe- und Co-Clustern mit Gasphasenexperimenten zeigen auf, dass unter stabil gewählten Bedingungen die intrinsischen magnetischen Clustereigenschaften tatsächlich experimentell zugänglich sind. Die synchrotroninduzierte Mobilität von Clustern und Argon manifestiert sich in der Veränderung der Form der Absorptions- und Photoemissionslinien sowie in der zunehmenden Verminderung der gemessenen Magnetisierung. Neben den geeigneten Experimentierbedingungen ist zur Bestimmung der magnetischen Momente die Anwendbarkeit der XMCD-Summenregeln auf die Spektroskopie an Clustern notwendig. Besondere Beachtung verdient dabei auf Grund der reduzierten Symmetrie in Clustern der "magnetische Dipolterm" zur Spin-Summenregel. Der Vergleich des spektroskopisch ermittelten Gesamtmoments mit demjenigen, welches aus superparamagnetischen Magnetisierungskurven bestimmt wurde, erlaubt es, für seinen Beitrag bei Co-Clustern eine obere Schranke von 10% anzugeben. Erwartungsgemäß weisen die Spinmomente von Fe- und Co-Clustern gemessen am Festkörper deutlich erhöhte Werte auf, allerdings reichen sie nicht an die mittels Stern-Gerlach-Ablenkung bestimmten magnetischen Gesamtmomente der Cluster heran. Die elektronische Struktur von Nickelclustern erweist sich als sehr empfindlich gegen Wechselwirkungen mit Fremdatomen, so dass die magnetischen Resultate aus der Gasphase nicht nachvollzogen werden können. Allen Clustern in der Argonumgebung ist jedoch eine starke Erhöhung des bahnartigen Anteils am Gesamtmoment, generell auf mehr als 20% gemein. Damit kann nachgewiesen werden, dass die bestehende Diskrepanz zwischen berechneten Spinmomenten und experimentell bestimmten Gesamtmomenten in der Tat auf große Bahnmomente zurückzuführen ist. Dies gilt um so mehr, als die in dieser Arbeit bestimmten magnetischen Gesamtmomente an Fe- und Co-Clustern in guter Übereinstimmung mit Stern-Gerlach-Experimenten stehen. Die Wechselwirkung der Cluster mit der Oberfläche des Graphits führt bereits in den XAS-Absorptionsprofilen der L-Kanten zu sichtbaren Veränderungen in Form und energetischer Position der Absorptionsresonanzen. Alle untersuchten Cluster erfahren gleichzeitig eine starke Reduktion ihrer magnetischen Momente, häufig bis unter die Nachweisgrenze. Unter diesen Umständen ist es durchaus angebracht, von einer starken Cluster-Substrat-Wechselwirkung auszugehen. Dieser Befund wird durch die mittels Photoelektronenspektroskopie erzielten Ergebnisse untermauert. Veränderungen durch das "Einschalten" der Substratwechselwirkung sind sowohl in den Rumpfniveau- als auch den Valenzbandspektren zu erkennen. Charakteristisch für die ausführlicher untersuchten Ni-Cluster ist die Ausbildung einer, mit dem Graphitsubstrat hybridisierten, Elektronenstruktur mit reduzierter Zustandsdichte in der Umgebung des Ferminiveaus. Eine solche Konfiguration begünstigt die Ausbildung von "low-spin" - Zuständen, wie sie in den XMCD-Experimenten bei vorhandener Wechselwirkung mit dem Graphit gefunden werden. Die starke Kopplung der elektronischen Zustände von Cluster und Substrat äußert sich ebenfalls in dem Verlust des Fano-Resonanzverhaltens in der resonanten Photoemission an der 3p-Absorptionsschwelle. Das Fehlen der analogen Beobachtung an der 2p-Schwelle, muss einer starken Lokalisierung des 2p-rumpflochangeregten Zwischenzustandes zugeschrieben werden. Die genaue Analyse der Veränderung des resonant-Raman-Verhaltens in der 2p-RESPES könnte wertvolle komplementäre Informationen liefern, wird aber durch die Gegenwart der Argon-Valenzemission zu stark behindert, um konkrete Aussagen zuzulassen. Die Analyse der RESPES-Daten lässt den Schluss zu, dass die tatsächliche Besetzung der 3d-Zustände durch die Substratwechselwirkung nicht nennenswert verändert wird. Neben der Charakterisierung der großen magnetischen Clustermomente nach Spin- und Bahnanteilen vermitteln die Experimente dieser Arbeit einen guten Einblick in die Veränderungen der elektronischen Eigenschaften durch die Wechselwirkung mit dem Graphit. Der Einfluss des Substrates führt zu einer starken Verkleinerung der magnetischen Momente. Offensichtlich wird die elektronische Gesamtenergie an der Grenzfläche durch die Ausbildung von hybridisierten Zuständen minimiert, welche nahe der Fermienergie eine geringe Zustandsdichte besitzen. / The present thesis presents investigations on the magnetism and the electronic structure of deposited 3d transition metal clusters. Clusters are being deposited into thin argon layers in order to avoid fragmentation. At the same time the argon is used as a matrix providing an environment of weak interaction. Under suitably chosen stable experimental conditions the atomic absorption multiplet is observed and the magnetic moments of Fe and Co clusters determined by XMCD compare well to those observed in gas phase experiments. Thus intrinsic magnetic cluster properties can be probed from rare gas matrix isolated clusters. At elevated x-ray photon flux densities mobility of both, rare gas atoms and clusters, is generated by the synchrotron beam and leads to noticeable changes in spectroscopic line shapes and the reduction of the magnetic moments. Besides suitable experimental conditions it is important to ascertain the applicability of the XMCD sum rules in the case of the clusters. Due to the reduced symmetry in the clusters the magnetic dipole contribution to the spin sum rule deserves particular attention. From the comparison of the total magnetic moment determined by XMCD to the one following from superparamagnetic magnetisation curves an upper limit of 10% for this contribution can be determined. As expected the spin magnetic moments in Fe and Co clusters exceed those of the corresponding bulk materials. They do not, however, reach the values of the total magnetic moments determined from Stern-Gerlach deflection experiments. The electronic structure of Ni clusters proves to be particulary sensitive with respect to the interaction with foreign atoms. Therefore the gas phase magnetic moments cannot be reproduced in the present experiments. Common to all clusters within the argon film is a strong enhancement of the orbital contribution to the total magnetic moment, generally above 20%. This observation of strong orbital moments bridges the gap between calculated spin magnetic moments an experimental total moments. In particular we find good agreement of the total magnetic moments determined in the present work compared to those of Stern-Gerlach experiments. When the clusters interact with the graphite surface noticeable changes occur in both, the spectral shape and the energy positions of the L edge resonance profiles, respectively. All clusters investigated undergo a strong reduction of their magnetic moments under these conditions. It is therefore appropriate to consider the cluster substrate interaction to be considerable. This finding is further substantiated by the experimental results obtained by photoelectron spectroscopy. The substrate interaction leads to visible changes in the core level as well as the valence band spectra. For Ni clusters the latter reveal the formation of a hybridised electronic structure with a reduced density of states in the vicinity of the Fermi level. Such an electronic configuration favors the formation of low spin states which are indeed observed for the clusters interacting with graphite. The strong coupling of cluster an substrate electronic states is also reflected by the loss of the fano line shape in the 3p resonant photoemission signal. This observation does not hold for the RESPES at the 2p-threshold, however. This apparent discrepancy is attributed to a strongly localised core excited intermediate state at the 2p edge. While the detailed analysis of the resonant raman regime could yield useful complementary information it is prevented by the strong emission from the argon valence states. Nevertheless it can be inferred from the RESPES data that the 3d occupation number in Ni clusters is not substantially altered by the substrate interaction. The experiments of this work does provide the characterisation of the cluster magnetic moments in terms of their spin and orbital contributions. In addition they provide an inside into the modifications of the electronic properties emanating from the cluster substrate interaction. The hybridisation with graphite electronic structure leads to a strong reduction of the magnetic moments. Obviously, the interfacial total energy is minimised by adopting an electronic level structure with little density of states near the Fermi level.
4

Tracing Excited-State Photochemistry by Multidimensional Electronic Spectroscopy / Auflösung der Photochemie von angeregten Zuständen mittels multidimensionaler elektronischer Spektroskopie

Kullmann, Martin Armin January 2013 (has links) (PDF)
Light-induced excitation of matter proceeds within femtoseconds, resulting in excited states. Originating from these states chemical reaction mechanisms, like isomerization or bond formation, set in. Photophysical mechanisms like energy distribution and excitonic delocalization also occur. Thus, the reaction scheme has to be disentangled by assessing the importance of each process. Spectroscopic methods based on fs laser pulses have emerged as a versatile tool to study these reactions. Within this thesis time-resolved experiments with fs laser pulses on various molecular systems were performed. Novel photosystems, with possible applications ranging from ultrathin molecular wires to molecular switches, were extensively characterized. To resolve the complex kinetics of the investigated systems, time-resolved techniques had to be newly developed. By combining a visible excitation pulse pair with an additional pulse and a continuum probe electronic triggered-exchange two-dimensional spectroscopy (TE2D) was demonstrated for the first time. This goal was accomplished by combining a three-color transient-absorption setup with a pulse shaper. Hence, 2D spectroscopy with a continuum probe was also implemented. Using these methods two different molecular systems in solution were characterized in a comprehensive manner. (ZnTPP)2, a directly beta,beta’-linked Zn-metallated bisporphyrin, and a spiropyran-merocyanine photosystem, 6,8-dinitro BIPS, were characterized. (ZnTPP)2 is a homodimer, featuring strong excitonic effects. These manifest themselves in a twofold splitting of the Soret band (S2). 6,8-Dinitro BIPS exists in one of two possible conformations. The ring closed spiropyran absorbs only in the UV, while the ring open merocyanine also absorbs in the visible. For both molecular systems photodynamics upon illumination were monitored using transient-absorption. However, the obtained results were ambiguous, necessitating more complex methods. In the case of (ZnTPP)2 first the monomeric building block was characterized. There, population transfer from the S2 state into S1 within 2 ps was identified. Afterwards, intersystem crossing proceeds within 2 ns. For (ZnTPP)2 similar pathways were found, albeit the relaxation is faster. The intersystem crossing with 1.5 ns was not only indirectly deduced but directly measured by probing in the NIR spectral range. The excitonic influence of was investigated by coherent 2D spectroscopy in the Soret band. Population transfer within S2 was directly visualized on a time-scale of 100 fs. Calculation of the 2D spectra of a simple homodimer confirmed the results. After this analysis of the distinct excitonic character, this molecule may serve as a building block for larger porphyrin arrays with applications ranging from asymmetric catalysis over biomimicry of electron-transfer to organic optical devices. The second photosystem was the molecular switch 6,8-dinitro BIPS, existing in two conformations. Merocyanine is the more stable form in thermal equilibrium. Transient-absorption measurements uncovered that the sample consisted of a mixture of two merocyanine isomers, referred to as TTC and TTT. However, both isomers are capable of ring-closure forming spiropyran. The remaining excited molecules return to the ground state radiatively. Conducting 2D measurements utilizing a continuum probe the differing photochemistry of both isomers was examined in a single measurement. No isomerization between these conformations was detected. Therefore, 6,8-dinitro BIPS performs a concerted switching without long-living intermediates. This was confirmed by a pump-repump-probe scan. 6,8-DinitroBIPS can be closed by visible and opened by UV pulses using subsequent pulses and vice versa. These mechanisms via singlet pathways satisfy an important criterion for a unimolecular switching device. A second pump-repump-probe experiment showed that the sample is ionized, resulting in a merocyanine radical cation, when the first excited state is resonantly excited. Furthermore, by implementing TE2Dspectroscopy, it was elucidated that only TTC was ionized. Taking all this into account new techniques were developed and complex molecular systems were characterized within this thesis. Deeper insight into the photodynamics of (ZnTPP)2and 6,8-dinitro BIPS was gained by adapting transient absorption for the NIR spectral range, constructing a 2D setup in pump-probe geometry, and combining it with multipulse excitation to coherent TE2D. All techniques solved the questions for which they were constructed, but they are not limited to these cases. Especially TE2D opens new roads in photochemistry. By connecting reactant, product and the corresponding intermediates, a chemical reaction can be tracked through all stages, making unambiguous identification of the reactive states feasible. Thus, fundamental insight into the photochemistry of molecular compounds is gained. / Über Lichtanregung erreichen Moleküle innerhalb von Femtosekunden angeregte Zustände. Aus diesen können photochemische Reaktionen wie Isomerisierungen einsetzen. Zusätzlich treten photophysikalische Effekte wie exzitonische Delokalisierungen auf. Daher ist es wichtig, die auftretenden Relaxationspfade zu analysieren um das Reaktionsschema des Systems zu erhalten. Ultrakurzzeitspektroskopie mit Femtosekundenlaserpulsen hat sich als nützliches Werkzeug erwiesen um lichtinduzierte Reaktionen auf ihrer intrinsischen Zeitskala zu studieren. In dieser Arbeit sind zeitaufgelöste Experimente an unterschiedlichen Verbindungen durchgeführt worden. Einerseits wurden neuartige Molekülklassen umfassend photodynamisch untersucht. Andererseits sind neue breitbandige Spektroskopiemethoden entwickelt worden. Durch die Kombination eines Anregungspulspaars mit einem weiteren Laserpuls sowie einem Weißlichtkontinuum wurde zum ersten Mal elektronische zweidimensionale Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D“, TE2D) demonstriert. Dies war durch die Implementierung eines Pulsformers in ein transientes Absorptionsspektrometer möglich. In einem ersten Experiment wurde die prinzipielle Eignung des Aufbaus getestet indem 2D Spektroskopie mit Weißlichtabfrage implementiert wurde. Diese Methoden wurden dazu genutzt zwei verschiedene Verbindungen zu untersuchen, ein direkt beta,beta'-verknüpftes, Zn-metalliertes Bisporphyrin [(ZnTPP)2] und ein Spiropyran-Merocyanin Photoschalter (6,8-dinitro BIPS). (ZnTPP)2 ist ein Homodimer, in welchem sich starke exzitonische Einflüsse, z. B. das Aufspalten der Soret-Bande (S2), zeigen. 6,8-Dinitro BIPS hingegen besteht aus zwei Konformeren. Zum einen liegt das nur im UV absorbierende Spiropyran vor. Das zweite Konformer ist Merocyanin, welches zusätzlich im sichtbaren absorbiert. Zuerst sind die Relaxationsdynamiken beider Moleküle mittels transienter Absorption untersucht worden. Allerdings waren die Resultate nicht eindeutig, so dass im Anschluss komplexere Messmethoden angewandt wurden. Für das Studium des Bisporphyrins (ZnTPP)2 wurde das zugehörige Monomer untersucht. Nach Anregung relaxiert die Population aus dem S2 in den S1 Zustand. Anschließend tritt Intersystem Crossing in T1 ein. Für das Dimer selbst ergaben sich die gleichen Reaktionswege. Das Intersystem Crossing wurde nicht nur abgeleitet, sondern durch Abfrage im nahinfraroten Spektralbereich direkt gemessen. Der Einfluss der Exzitonen auf das Bisporphyrin wurde durch kohärente 2D Spektroskopie innerhalb der Soret-Bande untersucht. Dies ermöglichte die Visualisierung von Populationstransfer innerhalb von 100 fs. Eine Berechnung der 2D Spektren eines einfachen Homodimers unterstützt dieses Resultat. Indem die hier vorgestellten Ergebnisse genutzt werden, könnte (ZnTPP)2 als Baustein für Porphyrinsysteme dienen. Deren denkbare Anwendungen reichen von asymmetrischer Katalyse über die Nachahmung von biologischem Elektronentransfer hinzu organo-optischen Geräten. Das zweite untersuchte System war der molekulare Schalter 6,8-dinitro BIPS mit Merocyanin als stabile Form im thermischen Gleichgewicht. Transiente Absorptionsmessungen deckten auf, dass die Lösung aus zwei Merocyanin-Isomeren besteht (TTC oder TTT). Es ergab sich ebenso, dass beide eine elektrozyklische Ringschlussreaktion zum Spiropyran durchführen. Mittels eines 2D Spektrums konnte die unterschiedliche Photochemie beider Isomere innerhalb einer einzigen Messung aufgezeigt werden. Zusätzlich wurde keine Isomerisierung zwischen ihnen beobachtet. Damit steht fest, dass 6,8-dinitro BIPS eine konzertierte Reaktion zum Spiropyran durchführt. Der direkte Schaltvorgang wurde eindeutig über Anrege-Wiederanrege-Abfrage Spektroskopie nachgewiesen. Hierfür wurde 6,8-dinitro BIPS mit sichtbarem gefolgt von ultraviolettem Licht bestrahlt. Der resultierende zweifache Schaltvorgang ist ein wichtiges Kriterium für einen Photoschalter. Ein ähnliches Experiment zeigte, dass 6,8-dinitro BIPS ionisiert wird, wenn die angeregte Population resonant bestrahlt wird. Das neugebildete langlebige Produkt konnte einem Kation zugeordnet werden. Durch die Verwendung der neuen elektronischen TE2D Methode ist aufgezeigt worden, dass lediglich TTC ionisiert werden kann. Zusammengefasst gilt, dass sowohl Fortschritte in der Methodenentwicklung als auch in der Charakterisierung von Verbindungen erzielt wurden. Ein tieferes Verständnis über die Dynamiken des Bisporphyrins (ZnTPP)2 und des molekularen Schalters 6,8-dinitro BIPS wurden durch Erweiterungen an einem transienten Absorptionsspektrometers, den Aufbau eines 2D Spektrometers in Anrege-Abfrage-Geometrie und durch die Kombination von letzterem mit Mehrfachanregung zu TE2D Spektroskopie gewonnen. Insbesondere letztere eröffnet neue Möglichkeiten in der Photochemie, da Edukte, Produkte und die zugehörigen Zwischenzustände miteinander verknüpft werden, wodurch lichtinduzierte Reaktionen schrittweise nachvollzogen werden können.
5

Elektronenspektroskopie und Faktoranalyse zur Untersuchung von ionenbeschossenen Metall (Re, Ir, Cr, Fe)-Silizium-Schichten

Reiche, Rainer. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2000--Dresden.
6

Spectroscopy as a tool to investigate the high energy optical properties of nanostructured magnetically doped topological insulator / Spektroskopie als Methode zur Untersuchung der optischen Eigenschaften nanostrukturierter, magnetisch dotierter Topologischer Isolatoren bei hohen Energien

Al-Baidhani, Mohammed January 2018 (has links) (PDF)
In this dissertation the electronic and high-energy optical properties of thin nanoscale films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). Magnetic topological insulators are presently of broad interest as the combination of ferromagnetism and spin-orbit coupling in these materials leads to a new topological phase, the quantum anomalous Hall state (QAHS), with dissipation less conduction channels. Determining and controlling the physical properties of these complex materials is therefore desirable for a fundamental understanding of the QAHS and for their possible application in spintronics. EELS can directly probe the electron energy-loss function of a material from which one can obtain the complex dynamic dielectric function by means of the Kramers-Kronig transformation and the Drude-Lindhard model of plasmon oscillations. The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with regards to inelastic background contributions. It is shown that the spectra can be accurately described based on the electron energy-loss function obtained from an independent EELS measurement. This allows for a comprehensive and quantitative analysis of the XPS data, which will facilitate future core-level spectroscopy studies in this class of topological materials. From the EELS data, furthermore, the bulk and surface optical properties were estimated, and compared to ab initio calculations based on density functional theory (DFT) performed in the GW approximation for Sb2Te3. The experimental results show a good agreement with the calculated complex dielectric function and the calculated energy-loss function. The positions of the main plasmon modes reported here are expected to be generally similar in other materials in this class of nanoscale TI films. Hence, the present work introduces EELS as a powerful method to access the high-energy optical properties of TI thin films. Based on the presented results it will be interesting to explore more systematically the effects of stoichiometry, magnetic doping, film thickness and surface morphology on the electron-loss function, potentially leading to a better understanding of the complex interplay of structural, electronic, magnetic and optical properties in MTI nanostructures. / Die vorliegende Dissertation beschäftigt sich mit den elektronischen und hochen- ergetischen optischen Eigenschaften von auf der Nanoskala dünnen Filmen des magnetischen topologischen Isolators (MTI) (V,Cr)y(BixSb1−x)2−yTe3 mithilfe von Röntgenphotoelektronenspektroskopie (engl.: X-ray photoelectron spectroscopy, XPS), sowie Elektronenenergieverlustspektroskopie (engl.: electron energy-loss spectroscopy, EELS). Magnetische topologische Isolatoren sind gegenwärtig von großem Interesse, da die Kombination von Ferromagnetismus und Spin-Bahn- Kopplung in diesen Materialien zu einer neuen topologischen Phase führt, der Quanten-Anomalen-Hall-Phase (engl.: quantum anomalous Hall state, QAHS), die sich durch verlustfreie Leitungskanäle auszeichnet. Bestimmung und Kontrolle der physikalischen Eigenschaften dieser komplexen Materialien ist somit erstrebenswert für ein fundamentales Verständnis des QAHS sowie für Anwendungen in der Spin- tronik. EELS erlaubt die direkte Untersuchung der Elektronenenergieverlustfunk- tion eines Materials, aus der man, mithilfe der Kramers-Kronig-Transformation und des Drude-Lindhard-Modells von Plasmonenoszillationen, die komplexe dynamis- che dielektrische Funktion des Materials erhält. In den XPS-Spektren der Rumpfniveaus in (V,Cr)y(BixSb1−x)2−yTe3 wird detail- liert insbesondere der Beitrag des inelastischen Untergrunds analysiert. Es kann gezeigt werden, dass, basierend auf der in einem unabhängigen EELS-Experiment gewonnenen Elektronenenergieverlustfunktion, die Rumpfniveauspektren präzise beschrieben werden können. Dies erlaubt eine umfangreiche und quantitative Anal- yse der Daten, was zukünftige Rumpfniveaustudien dieser Klasse topologischer Materialien erleichtern wird. Die mit EELS gewonnenen Daten ermöglichen weiter- hin eine Abschätzung der optischen Eigenschaften von Volumen und Oberfläche der Materialien, die in der vorliegenden Arbeit mit ab initio Berechnungen aus der Literatur für Sb2Te3 verglichen werden, welche auf Basis der Dichtefunktionaltheo- rie (DFT) in GW-näherung durchgeführt wurden. Die experimentellen Ergebnisse zeigen gute Übereinstimmungen mit der berechneten komplexen dielektrischen Funktion, sowie mit der Energieverlustfunktion. Es wird erwartet, dass die hier beschriebenen Positionen der Hauptplasmonenmoden im Allgemeinen ähnlich zu denen anderer Materialien dieser Klasse auf der Nanoskala dünner topologischer Isolatoren sind. Somit stellt die vorliegende Arbeit das EELS Experiment als eine mächtige Methode vor, die einen Zugang zu den hochenergetischen optischen Eigen- schaften dünner TIs schafft. Basierend auf den hier vorgestellten Ergebnissen bleibt es interessant sein die Auswirkungen von Stöchiometrie, magnetischer Dotierung, Filmdicke, sowie Oberflächenmorphologie auf die Energieverlustfunktion system- atischer zu untersuchen, um damit ein besseres Verständnis für das komplexe Zusammenspiel aus strukturellen, elektronischen und optischen Eigenschaften in MTI-Nanostrukturen zu erlangen.
7

Eigenschaften anodischer Oxidschichten auf Titan : Einfluss und Wirkung der Anodisation

Müller, Yves January 2002 (has links) (PDF)
Zürich, Techn. Hochsch., Diss., 2002. / Zürich, ETH, Diss., 2002.
8

Untersuchung der elektronischen Struktur quasi-zweidimensionaler Einlagerungsverbindungen

Danzenbächer, Steffen. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2001--Dresden.
9

Experimentelle Untersuchungen zum interatomaren Coulomb-Zerfall an Neon -Clustern Nachweis eines ultraschnellen nichtlokalen Zerfallskanals /

Marburger, Simon Patrick. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
10

Magnetische und elektronische Eigenschaften von Übergangsmetalloxid-Nanostrukturen

Hellmann, Ingo 29 September 2009 (has links) (PDF)
Die eingereichte Dissertation befasst sich mit Übergangsmetalloxid-Nanostrukturen, wobei quasi-eindimensionale Materialien im Mittelpunkt stehen, z.B. Nanoröhren und Nanostäbe. Mittels Suszeptibilitäts- bzw. EELS-Messungen wurden magnetische und elektronische Eigenschaften verschiedener Nanoverbindungen untersucht. Zur weiteren Charakterisierung der Proben wurden außerdem Magnetisierungsmessungen (VSM, Pulsfeld), optische Spektroskopie, AC-Suszeptibilitätsmessungen, Messungen der spezifischen Wärme sowie NMR- und ESR-Experimente durchgeführt. Ein Schwerpunkt dieser Arbeit sind Vanadiumoxid-Verbindungen, wobei Vanadiumoxid-Nanoröhren (VOxNT) aufgrund ihrer besonderen Morphologie eine Sonderstellung unter den vorgestellten Materialien besitzen. Suszeptibilitätsmessungen an den VOxNT offenbaren aktiviertes Verhalten bei Temperaturen T > 100 K, was auf V4+-Spindimere zurückgeführt werden kann. Zudem existieren quasi-freie V4+-Momente sowie längere Spinkettenfragmente, z.B. Trimere. Elektronische Anregungen im Valenzband können wahrscheinlich dem Platzwechsel von 3d-Elektronen zwischen V4+- und V5+-Plätzen innerhalb der gemischtvalenten V-O-Ebenen zugeschrieben werden. Durch Dotierung mit Alkalimetallen ist es möglich, die V 3d-Niveaus mit zusätzlichen Elektronen zu besetzen und dadurch die Vanadiumvalenz zu beeinflussen (V5+ -> V4+ -> V3+). Die dabei auftretenden stärkeren Coulombabstoßungen zwischen den V 3d-Elektronen beeinträchtigen die Mobilität der Ladungsträger. Ebenso wurde gezeigt, dass sich durch die Dotierung mit Ammoniak und anderen Übergangsmetallionen die Vanadiumvalenz sowie der Magnetismus der VOxNT beeinflussen lassen. Die Ergebnisse von weiteren Vanadiumoxid-Nanostrukturen - Co0.33V2O5, alpha-NaV2O5, VO2(B) sowie V3O7·H2O-Nanokristallen - zeigen, dass sehr unterschiedliches magnetisches Verhalten wie Paarbildung zwischen V4+-Spins, antiferromagnetisch gekoppelte Spinketten oder ein Phasenübergang zwischen zwei paramagnetischen Temperaturbereichen auf Nanoebene realisiert werden kann. Die magnetischen Eigenschaften von MnO2-Nanostäben sind durch starke Kopplungen und Frustration zwischen den Mn-Spins gekennzeichnet. Außerdem zeigt die Verbindung Merkmale eines Spinglases. Durch Dotierung mit Elektronen lässt sich bei diesem Material die Mn-Valenz verändern. Schließlich zeigen erste Charakterisierungsmessungen an übergangsmetalldotierten MoO3-Nanobändern paramagnetisches Verhalten dieser Systeme.

Page generated in 0.0927 seconds