• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pack, David J. January 2005 (has links)
[Truncated abstract] The ‘elemental sulphur’ deposition problem is a fairly recent phenomenon for gas transmission pipelines. Although known for a number of decades to cause plugging in reservoir wellhead facilities, it is since about 1990 that ‘elemental sulphur’ deposition has openly been acknowledged as a problem in natural gas pipelines and other facilities downstream of gas processing plants. Within the past ten years this formation / deposition process has progressively been more widely observed. The increasing trend to have transmission pipeline systems operating at higher pressures is a significant contributing factor in the formation of “elemental sulphur”. This research project has been able to identify the principles and mechanisms associated with the formation and deposition ‘sulphur vapour map’ concept, that only sub ppm levels of sulphur vapour within the gas stream is required to initiate the “elemental sulphur” formation / deposition process. The ‘sulphur vapour map’ can be used in predicting the degree of sulphur vapour desublimation that will occur for given pipeline operating conditions of pressure, temperature and gas composition. This, in turn, will assist in the minimization of the deposition process through the ability to make simple, yet appropriate, modifications to the design of the required pipeline pressure regulation stage. A significant number of other potential contributing factors to this pipeline particle formation and deposition process have also been identified through this research work. From these findings a number of additional recommendations have been made that will assist pipeline operators in minimizing the impact of this deposition problem. These recommendations are based on the operation of the pipeline, and particularly the control of the entry of liquids and other contaminants into the pipeline system. Recommendations for further research into this complex problem are also made.
2

Etude expérimentale de la solubilité du soufre dans le gaz naturel / Experimental studies of sulphur solubility in natural gas

Cloarec, Eric 18 December 2012 (has links)
Ces dernières années, des problèmes de fonctionnement dus à la formation de dépôts de soufre élémentaire ont été rapportés dans les réseaux de transport du gaz naturel. La compréhension du phénomène passe par la connaissance de la solubilité du soufre dans ces conditions de pression et de température. Des données sont disponibles seulement dans les conditions de gisement du gaz naturel. Un appareillage expérimental a donc été conçu pour mesurer la solubilité du soufre dans les conditions de transport du gaz naturel. Le protocole de mesure se décompose en trois étapes. La première consiste saturer un gaz en soufre dans une cellule d’équilibre. Une fois l’équilibre solide/gaz établi, le gaz saturé est évacué et bulle dans une solution de piégeage qui capture le soufre dissout par absorption réactive. La dernière étape consiste en la quantification indirecte du soufre présent dans la solution de piégeage par chromatographie en phase gazeuse / Over recent years, many problems of elemental sulphur deposits in natural gas transmission line systems have been notified. These problems occur very often immediately downstream of a pressure reduction facility. In order to prevent the apparition of solid sulphur deposits causing security and maintenance problems it is imperative to determine sulphur solubility in natural gas at pressures and temperatures corresponding to transport conditions. For this work, an original experimental apparatus was designed to measure sulphur solubility in natural gas. The protocol principle is schematically divided into three steps: saturation, trapping and quantification. During the first step solid/gas equilibrium is established between the studied gas and the solid sulphur. Then the saturated gas is evacuated and pass through three separators where sulphur is trapped by reactive absorption. Finally the trapping solution are analyzed by gas chromatography to determine the solubility.
3

<i>In-situ</i> Wachstumsuntersuchungen beim reaktiven Anlassen von Cu, In Schichten in elementarem Schwefel

Pietzker, Christian January 2003 (has links)
In dieser Arbeit wurde das reaktive Anlassen von dünnen Kupfer-Indium-Schichten in elementarem Schwefel mittels energiedispersiver Röntgenbeugung untersucht. Durch die simultane Aufnahme der Röntgenspektren und der Messung der diffusen Reflexion von Laserlicht der Wellenlänge 635 nm an der Oberfläche der Probe während des Schichtwachstums von CuInS<SUB>2</SUB> konnte eine Methode zur Prozesskontrolle für ein Herstellungsverfahren von CuInS<SUB>2</SUB> etabliert werden. <br><br>Die Bildung von CuInS<SUB>2</SUB> aus Kupfer-Indium-Vorläuferschichten wird dominiert von Umwandlungen der intermetallischen Phasen. CuInS<SUB>2</SUB> wächst innerhalb der Aufheizperiode ab einer Temperatur von ca. 200°C aus der Phase Cu<sub>11</sub>In<sub>9</sub>. Jedoch zerfällt letztere metallische Phase in Cu<sub>16</sub>In<sub>9</sub> und flüssiges Indium bei einer Temperatur von ca. 310°C. Das flüssige Indium reagiert im Falle von Kupferarmut mit dem Schwefel und führt zu einem zusätzlichen Reaktionspfad über InS zu CuIn<sub>5</sub>S<sub>8</sub>. Unter Präparationsbedingungen mit Kupferüberschuss wird das Indium in einer intermetallischen Phase gebunden.<br><br>Erstmals konnte die Phase Digenite bei Temperaturen über 240°C beobachtet werden. Beim Abkühlen auf Raumtemperatur wandelt sich diese Phase unter dem Verbrauch von Schwefel in Covellite um.<br><br>Für Proben mit Kupferüberschuss konnte eine Wachstumskinetik proportional zur Temperatur beobachtet werden. Dieses Verhalten wurde durch eine stress-induzierte Diffusion als dominierenden Reaktionsmechanismus interpretiert. Dabei werden während der Bildung von CuInS<SUB>2</SUB> durch unterschiedliche Ausdehnungen der metallischen und sulfidischen Schichten eine Spannung in der CuInS<SUB>2</SUB>-Schicht induziert, die nach Überschreiten einer Grenzspannung zu Rissen in der CuInS<sub>2</sub>-Schicht führt. Entlang dieser Risse findet ein schneller Transport der Metalle zur Oberfläche, wo diese mit dem Schwefel reagieren können, statt. Die Risse heilen durch die Bildung neuen Sulfids wieder aus. / In this work the reactive annealing of thin copper and indium films in elemental sulphur was investigated by energy dispersive X-ray diffraction. Measuring simultanously laser light diffusively reflected from the growth surface, a simple method for process monitoring could be established. The process monitoring using 635 nm laser light can now independently be used in production.<br><br>The growth of CuInS<SUB>2</SUB> from copper-indium precursors is dominated by transitions between intermetallic phases. CuInS<SUB>2</SUB> growths in the heat up period above 200 °C from the phase Cu<SUB>11</SUB>In<SUB>9</SUB>. However the latter metallic phase decomposes into Cu<SUB>16</SUB>In<SUB>9</SUB> and liquid indium at a temperature of 310 °C. The liquid indium reacts in the case of copper deficiency with sulphur to InS. This leads to an additional reaction path via InS to CuIn<SUB>5</SUB>S<SUB>8</SUB>. Under preparation conditions with copper excess to the contrary, indium is bound in an intermetallic phase.<br><br>For the first time the phase Digenite could be observed in a growth experiment at temperatures above 240 °C. During cool down to room temperature this phase transforms to Covellite by consumption of sulphur.<br><br>For samples with copper excess a growth kinetic proportional to the temperature was observed. This behaviour is interpreted by a stress induced reaction mechanism: During the formation of CuInS<SUB>2</SUB>, strain in the CuInS<SUB>2</SUB> thin film is induced due to different expansion coefficients of the metallic and sulphurous phases. After transgression of a certain strain limit, cracks within CuInS<SUB>2</SUB> are formed. Along these cracks, fast transport of metallic species to the surface can occur. There these species can react with the sulphur. The cracks can heal up by the formation of new sulphides.
4

Oxidative dissolution of chalcopyrite in ferric media: an x-ray photoelectron spectroscopy study

Parker, Andrew Donald January 2008 (has links)
The oxidative dissolution of chalcopyrite in ferric media often produces incomplete copper recoveries. The incomplete recoveries have been attributed to inhibition caused by the formation of a metal deficient sulphide and the deposition of elemental sulphur and jarosite. Although these phases have been qualitatively identified on the surface of chalcopyrite, none have been quantitatively identified. The aim of the project was to quantitatively analyse the surface before and after oxidative dissolution, with X-ray photoelectron spectroscopy (XPS), and to use the phases identified as the basis for mechanisms of dissolution and inhibition. / XPS analysis was performed on chalcopyrite massive fractured under anaerobic atmosphere and chalcopyrite massive and concentrate oxidised in 0.1 M ferric sulphate (pH 1.9) and 0.2 M ferric chloride (pH 1.6) at 50, 65 and 80ºC. Quantitative XPS analysis of the chalcopyrite surfaces required the development of programs that accounted for the observed XPS spectra. The output of these programs was used to construct profiles of the chalcopyrite surfaces and the deposited phases. These surface profiles were correlated with copper recoveries determined for chalcopyrite concentrate dissolution under the same conditions. / The surface of chalcopyrite before oxidative dissolution reconstructs to form a `pyritic' disulphide phase. This phase is oxidised in ferric media to form thiosulphate via the incorporation of oxygen atoms from the hydration sphere. The thiosulphate reacts in the oxidising conditions of low pH to form elemental sulphur, sulphite and sulphate. The sulphate complexes with ferric to produce hydronium jarosite. This reaction occurs at the surface during the initial stages of dissolution and in the bulk solution during the latter stages. This precipitation of hydronium jarosite during the latter stages of dissolution corresponds to inhibition of the dissolution reaction. It is therefore concluded hydronium jarosite is responsible for inhibiting the oxidative dissolution of chalcopyrite in ferric media. / The identification of hydronium jarosite as the inhibiting phase is consistent with the industrial practice of removing `excess' iron from the ferric solution before oxidative dissolution. However, additional iron and sulphate are generated at the chalcopyrite surface during oxidative dissolution. These high iron and sulphate concentrations combine with the low pH and high temperatures favoured for the oxidative dissolution of chalcopyrite to produce ideal conditions for jarosite precipitation. Therefore, pH must be lowered further to prevent jarosite precipitation and enhance copper recoveries from chalcopyrite in ferric media.

Page generated in 0.0895 seconds