• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 10
  • 7
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 123
  • 123
  • 78
  • 29
  • 23
  • 21
  • 20
  • 17
  • 17
  • 16
  • 16
  • 16
  • 16
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Elliptic curve cryptography algorithms resistant against power analysis attacks on resource constrained devices / Algorithmes cryptographiques à base de courbes elliptiques résistant aux attaques par analyse de consommation

Houssain, Hilal 21 December 2012 (has links)
Les systèmes de cryptographie à base de courbe elliptique (ECC) ont été adoptés comme des systèmes standardisés de cryptographie à clé publique (PKC) par l'IEEE, ANSI, NIST, SEC et WTLS. En comparaison avec la PKC traditionnelle, comme RSA et ElGamal, l'ECC offre le même niveau de sécurité avec des clés de plus petites tailles. Cela signifie des calculs plus rapides et une consommation d'énergie plus faible ainsi que des économies de mémoire et de bande passante. Par conséquent, ECC est devenue une technologie indispensable, plus populaire et considérée comme particulièrement adaptée à l’implémentation sur les dispositifs à ressources restreintes tels que les réseaux de capteurs sans fil (WSN). Le problème majeur avec les noeuds de capteurs chez les WSN, dès qu'il s'agit d’opérations cryptographiques, est les limitations de leurs ressources en termes de puissance, d'espace et de temps de réponse, ce qui limite la capacité du capteur à gérer les calculs supplémentaires nécessaires aux opérations cryptographiques. En outre, les mises en oeuvre actuelles de l’ECC sur WSN sont particulièrement vulnérables aux attaques par canaux auxiliaires (SCA), en particulier aux attaques par analyse de consommation (PAA), en raison de l'absence de la sécurité physique par blindage, leur déploiement dans les régions éloignées et le fait qu’elles soient laissées sans surveillance. Ainsi, les concepteurs de crypto-processeurs ECC sur WSN s'efforcent d'introduire des algorithmes et des architectures qui ne sont pas seulement résistants PAA, mais également efficaces sans aucun supplément en termes de temps, puissance et espace. Cette thèse présente plusieurs contributions dans le domaine des cryptoprocesseurs ECC conscientisés aux PAA, pour les dispositifs à ressources limitées comme le WSN. Premièrement, nous proposons deux architectures robustes et efficaces pour les ECC conscientisées au PAA. Ces architectures sont basées sur des algorithmes innovants qui assurent le fonctionnement de base des ECC et qui prévoient une sécurisation de l’ECC contre les PAA simples (SPA) sur les dispositifs à ressources limitées tels que les WSN. Deuxièmement, nous proposons deux architectures additionnelles qui prévoient une sécurisation des ECC contre les PAA différentiels (DPA). Troisièmement, un total de huit architectures qui incluent, en plus des quatre architectures citées ci-dessus pour SPA et DPA, deux autres architectures dérivées de l’architecture DPA conscientisée, ainsi que deux architectures PAA conscientisées. Les huit architectures proposées sont synthétisées en utilisant la technologie des réseaux de portes programmables in situ (FPGA). Quatrièmement, les huit architectures sont analysées et évaluées, et leurs performances comparées. En plus, une comparaison plus avancée effectuée sur le niveau de la complexité du coût (temps, puissance, et espace), fournit un cadre pour les concepteurs d'architecture pour sélectionner la conception la plus appropriée. Nos résultats montrent un avantage significatif de nos architectures proposées par rapport à la complexité du coût, en comparaison à d'autres solutions proposées récemment dans le domaine de la recherche. / Elliptic Curve Cryptosystems (ECC) have been adopted as a standardized Public Key Cryptosystems (PKC) by IEEE, ANSI, NIST, SEC and WTLS. In comparison to traditional PKC like RSA and ElGamal, ECC offer equivalent security with smaller key sizes, in less computation time, with lower power consumption, as well as memory and bandwidth savings. Therefore, ECC have become a vital technology, more popular and considered to be particularly suitable for implementation on resource constrained devices such as the Wireless Sensor Networks (WSN). Major problem with the sensor nodes in WSN as soon as it comes to cryptographic operations is their extreme constrained resources in terms of power, space, and time delay, which limit the sensor capability to handle the additional computations required by cryptographic operations. Moreover, the current ECC implementations in WSN are particularly vulnerable to Side Channel Analysis (SCA) attacks; in particularly to the Power Analysis Attacks (PAA), due to the lack of secure physical shielding, their deployment in remote regions and it is left unattended. Thus designers of ECC cryptoprocessors on WSN strive to introduce algorithms and architectures that are not only PAA resistant, but also efficient with no any extra cost in terms of power, time delay, and area. The contributions of this thesis to the domain of PAA aware elliptic curve cryptoprocessor for resource constrained devices are numerous. Firstly, we propose two robust and high efficient PAA aware elliptic curve cryptoprocessors architectures based on innovative algorithms for ECC core operation and envisioned at securing the elliptic curve cryptoprocessors against Simple Power Analysis (SPA) attacks on resource constrained devices such as the WSN. Secondly, we propose two additional architectures that are envisioned at securing the elliptic curve cryptoprocessors against Differential Power Analysis (DPA) attacks. Thirdly, a total of eight architectures which includes, in addition to the two SPA aware with the other two DPA awareproposed architectures, two more architectures derived from our DPA aware proposed once, along with two other similar PAA aware architectures. The eight proposed architectures are synthesized using Field Programmable Gate Array (FPGA) technology. Fourthly, the eight proposed architectures are analyzed and evaluated by comparing their performance results. In addition, a more advanced comparison, which is done on the cost complexity level (Area, Delay, and Power), provides a framework for the architecture designers to select the appropriate design. Our results show a significant advantage of our proposed architectures for cost complexity in comparison to the other latest proposed in the research field.
122

Integer Factorization on the GPU / Integer Factorization on the GPU

Podhorský, Jiří January 2014 (has links)
This work deals with factorization, a decomposition of composite numbers on prime numbers and possibilities of its parallelization. It summarizes also the best known algorithms for factoring and most popular platforms for the implementation of these algorithms on the graphics card. The main part of the thesis deals with the design and implementation of hardware acceleration current fastest algorithm on the graphics card by using the OpenCL framework. Subsequently, the work provides a comparison of speeds accelerated algorithm implemented in this work with other versions of the best known algorithms for factoring, processed serially. In conclusion, the work discussed length of RSA key needed for safe operation without the possibility of breaking in real time interval.
123

Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices

Abu-Mahfouz, Adnan Mohammed 08 June 2005 (has links)
Data security will play a central role in the design of future IT systems. The PC has been a major driver of the digital economy. Recently, there has been a shift towards IT applications realized as embedded systems, because they have proved to be good solutions for many applications, especially those which require data processing in real time. Examples include security for wireless phones, wireless computing, pay-TV, and copy protection schemes for audio/video consumer products and digital cinemas. Most of these embedded applications will be wireless, which makes the communication channel vulnerable. The implementation of cryptographic systems presents several requirements and challenges. For example, the performance of algorithms is often crucial, and guaranteeing security is a formidable challenge. One needs encryption algorithms to run at the transmission rates of the communication links at speeds that are achieved through custom hardware devices. Public-key cryptosystems such as RSA, DSA and DSS have traditionally been used to accomplish secure communication via insecure channels. Elliptic curves are the basis for a relatively new class of public-key schemes. It is predicted that elliptic curve cryptosystems (ECCs) will replace many existing schemes in the near future. The main reason for the attractiveness of ECC is the fact that significantly smaller parameters can be used in ECC than in other competitive system, but with equivalent levels of security. The benefits of having smaller key size include faster computations, and reduction in processing power, storage space and bandwidth. This makes ECC ideal for constrained environments where resources such as power, processing time and memory are limited. The implementation of ECC requires several choices, such as the type of the underlying finite field, algorithms for implementing the finite field arithmetic, the type of the elliptic curve, algorithms for implementing the elliptic curve group operation, and elliptic curve protocols. Many of these selections may have a major impact on overall performance. In this dissertation a finite field from a special class called the Optimal Extension Field (OEF) is chosen as the underlying finite field of implementing ECC. OEFs utilize the fast integer arithmetic available on modern microcontrollers to produce very efficient results without resorting to multiprecision operations or arithmetic using polynomials of large degree. This dissertation discusses the theoretical and implementation issues associated with the development of this finite field in a low end embedded system. It also presents various improvement techniques for OEF arithmetic. The main objectives of this dissertation are to --Implement the functions required to perform the finite field arithmetic operations. -- Implement the functions required to generate an elliptic curve and to embed data on that elliptic curve. -- Implement the functions required to perform the elliptic curve group operation. All of these functions constitute a library that could be used to implement any elliptic curve cryptosystem. In this dissertation this library is implemented in an 8-bit AVR Atmel microcontroller. / Dissertation (MEng (Computer Engineering))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.0523 seconds