Spelling suggestions: "subject:"elliptic differencing equations"" "subject:"elliptic differenciation equations""
1 |
Sobre problemas de Ambrosetti-Prodi para sistemas elípticos com crescimento crítico unilateral / On Ambrosetti-Prodi type problems for elliptic systems with unilateral critical growthRibeiro, Bruno Henrique Carvalho 16 August 2018 (has links)
Orientadores: Djairo Guedes de Figueiredo, João Marcos Bezerra do Ó / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T16:52:57Z (GMT). No. of bitstreams: 1
Ribeiro_BrunoHenriqueCarvalho_D.pdf: 1676664 bytes, checksum: 8517caa733a0141397500732b70a6ae6 (MD5)
Previous issue date: 2010 / Resumo: Estudamos problemas do tipo Ambrosetti-Prodi para classes de sistemas elípticos gradientes com não-linearidades em crescimento crítico unilateral de Sobolev e de Trudinger-Moser. Com uso de métodos variacionais, provamos multiplicidade de solução para problemas homogêneos sem ressonância na parte linear e existência de solução não-trivial para problemas homogêneos com ressonância / Abstract: We study Ambrosetti-Prodi problems for classes of gradient elliptic systems with nonlinearities in the critical growth range of Sobolev and Trudinger-Moser types. Using variational methods, we prove multiplicity of solutions for nonhomogeneous problems without resonance in the linear part and homogeneous problems involving resonance / Doutorado / Analise / Doutor em Matemática
|
2 |
Implementação de um algoritmo multi-escala para sistemas de equações lineares de grande porte mal condicionados provenientes da discretização de problemas elípticos em dinâmica de fluidos em meios porosos / Implementation of a multiscale algorithm for the solution of ill-conditioned large linear systems obtained by the discretization of elliptic problems in fluid dynamicsFerraz, Paola Cunha, 1988- 26 August 2018 (has links)
Orientador: Eduardo Cardoso de Abreu / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:28:13Z (GMT). No. of bitstreams: 1
Ferraz_PaolaCunha_M.pdf: 6535346 bytes, checksum: 5f9c9ba53cd3e63fc60c09c90ad2c625 (MD5)
Previous issue date: 2015 / Resumo: O foco deste trabalho é aproximação numérica de problemas envolvendo equações diferenciais parciais (EDPs), de natureza elíptica, no contexto de aplicações em dinâmica de fluidos em meios porosos. Especificamente, a dissertação pretende contribuir com uma implementação de um algoritmo multiescala e multigrid, recentemente introduzido na literatura, para resolução aproximada de sistemas de equações lineares de grande porte e mal condicionados, proveniente dessa classe de EDPs, tipicamente associada a problemas de Poisson de pressão-velocidade com condições de contornos típicas de fluxo em meios porosos. O problema concreto de Poisson discutido neste trabalho será desacoplado do sistema de transporte de EDPs de convecção-difusão, com convecção dominante, e linearizado por meio do emprego de uma técnica de decomposição de operadores. A metodologia para a discretização do problema elíptico de Poisson é elementos finitos mistos híbridos. A resolução numérica do sistema linear resultante deste procedimento será realizado via um método do tipo Gradientes Conjugados com Pré-condicionamento (PCG) multiescala e multigrid. Combinamos as metodologias multi-escala e multigrid de modo a capturar os distintos comprimentos de onda associados aos diferentes comprimentos de onda do operador diferencial auto-adjunto de Poisson, fortemente influenciado pela heterogeneidade das propriedades geológicas do meio poroso, em particular da permeabilidade absoluta, que pode exibir flutuações em várias ordens de grandeza. Experimentos computacionais em aplicações de problemas de dinâmica de fluidos em meios porosos são apresentados e discutidos para verificação dos resultados obtidos / Abstract: The focus of this work is the numerical approximation of differential problems involving partial differential equations (PDE's) of elliptic nature, in the context of modelling and simulation in fluid dynamics in porous media. The dissertation aims to contribute with an implementation of a multiscale multigrid algorithm, recently introduced in the literature, designed for solving ill-conditioned large linear systems of equations derived from those classes of PDE's, typically associated with Poisson problems of pressure-velocity with boundary conditions typical of flow in porous media. The Poisson problem discussed here is identified from the coupled convection-diffusion transport system counterpart of PDE's, with dominated convection, and by a linearization by means the use of an operator splitting approach. The methodology used for the discretization of the Poisson elliptic problem is by mixed hybrid finite elements. The numerical solution of the resulting linear system will be addressed by a multiscale multigrid preconditioned conjugate gradient (PCG) method. We combine both methodologies in order to capture the distinct wavelengths associated with the different wavelengths from the assosiated self-adjoint Poisson operator, strongly influenced by the heterogeneity of the geological properties of the porous media, in particular to the absolute permeability tensor, which in turn might exhibit very large fluctuations of orders of magnitude. Numerical experiments in applications of fluid dynamics problems in porous media are presented and discussed for a verification of the results obtained by direct numerical simulations with the multiscale multigrid algorithm under consideration / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
|
Page generated in 0.1472 seconds