• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 15
  • 13
  • 12
  • 12
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um problema elíptico no RN assintoticamente linear e autônomo no infinito

Costa, Mayra Soares da Silva 09 March 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-04-28T16:17:20Z No. of bitstreams: 1 2016_MayraSoaresdaSilvaCosta.pdf: 1112782 bytes, checksum: 72ab544e06f853a082446abf4b9ee1d3 (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2016-05-04T12:58:44Z (GMT) No. of bitstreams: 1 2016_MayraSoaresdaSilvaCosta.pdf: 1112782 bytes, checksum: 72ab544e06f853a082446abf4b9ee1d3 (MD5) / Made available in DSpace on 2016-05-04T12:58:44Z (GMT). No. of bitstreams: 1 2016_MayraSoaresdaSilvaCosta.pdf: 1112782 bytes, checksum: 72ab544e06f853a082446abf4b9ee1d3 (MD5) / Nesse trabalho apresentamos um estudo sobre a caracterização do nível do Passo da Montanha para a seguinte classe de problemas autônomos, para N ≥ 2: -∆u = h(u), em RN, em que h satisfaz algumas hipóteses específicas. Em seguida, também para N ≥ 2, fazemos um estudo do seguinte problema: -∆u + V(x)u = f(u), em RN, em que f é assintoticamente linear, e satisfaz, assim como o potencial V, certas condições previamente estabelecidas. Nossa finalidade é, por meio de técnicas variacionais, obter uma solução positiva e uma solução de energia mínima para o problema. ______________________________________________________________________________________________ ABSTRACT / In this work, we present a study about the characterization of Mountain Pass level of the following class of autonomous problems, when N ≥ 2: -∆u = h(u), em N, Where h satisfies some specific hypothesis. After that, also for N ≥ 2 we study the following problem: -∆u + V(x)u = f(u), em N, where If is asymptotically linear and satisfies, as well as the potential V, certain previously established conditions. Our purpose is using variational techniques to get a positive solution and a least energy solution of the problem.
2

A equação de Poisson-Boltzmann em regiões com fronteira irregular

Bedin, Luciano January 2002 (has links)
Propomos uma idealização da situação em que uma macromolécula é ionizada em um solvente. Neste modelo a área da superfície da molécula é suposta ser grande com respeito a seu diâmetro. A molécula é considerada como um dielétrico com uma distribuição de cargas em sua superfície. Utilizando as condições de transmissão, a distribuição de Boltzmann no solvente e resultados recentes sobre espaços de Sobolev no contexto de espaços métricos, bem como de integração sobre superfícies irregulares, o problema é formulado em forma variacional. Resultados clássicos do cálculo de variações permitem a resolução analítica do problema.
3

A equação de Poisson-Boltzmann em regiões com fronteira irregular

Bedin, Luciano January 2002 (has links)
Propomos uma idealização da situação em que uma macromolécula é ionizada em um solvente. Neste modelo a área da superfície da molécula é suposta ser grande com respeito a seu diâmetro. A molécula é considerada como um dielétrico com uma distribuição de cargas em sua superfície. Utilizando as condições de transmissão, a distribuição de Boltzmann no solvente e resultados recentes sobre espaços de Sobolev no contexto de espaços métricos, bem como de integração sobre superfícies irregulares, o problema é formulado em forma variacional. Resultados clássicos do cálculo de variações permitem a resolução analítica do problema.
4

A equação de Poisson-Boltzmann em regiões com fronteira irregular

Bedin, Luciano January 2002 (has links)
Propomos uma idealização da situação em que uma macromolécula é ionizada em um solvente. Neste modelo a área da superfície da molécula é suposta ser grande com respeito a seu diâmetro. A molécula é considerada como um dielétrico com uma distribuição de cargas em sua superfície. Utilizando as condições de transmissão, a distribuição de Boltzmann no solvente e resultados recentes sobre espaços de Sobolev no contexto de espaços métricos, bem como de integração sobre superfícies irregulares, o problema é formulado em forma variacional. Resultados clássicos do cálculo de variações permitem a resolução analítica do problema.
5

Unidades ciclotomicas

Tanaami, Samuel 16 June 1989 (has links)
Orientadores: Francisco Thaine Prada, Tenkasi M. Viswanathan / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da Computação / Made available in DSpace on 2018-07-17T22:05:05Z (GMT). No. of bitstreams: 1 Tanaami_Samuel_M.pdf: 1845448 bytes, checksum: 7d367828f79435d232fee074160ec927 (MD5) Previous issue date: 1989 / Resumo: Não informado. / Abstract: Not informed. / Mestrado / Mestre em Matemática
6

Estudo sobre a teoria de vínculos de Hamilton-Jacobi /

Maia, N. T., (Natália Tenório) January 2013 (has links)
Orientador: Bruto Max Pimentel Escobar / Co-orientador: / Banca:Andrey Yuryevich Mikhaylov / Banca: Edmundo Capelas de Oliveira / Resumo: A teoria de Hamilton-Jacobi geralmente é apresentada como uma extensão da teoria de Hamilton através das transformações canônicas. No entanto, o matemático Constantin Carathéodory mostrou que essa teoria, sua existência e validade, independem do formalismo hamiltoniano. Neste trabalho, apresentaremos a abordagem de Carathéodory para a teoria de Hamilton-Jacobi. Partindo desse procedimento, construiremos uma teoria de vínculos para que se possa resolver problemas com vínculos involutivos e não-involutivos. Para isso, analisaremos a integrabilidade das equações e introduziremos a operação dos parênteses generalizados que, no lugar do parênteses de Poisson, passará a descrever a dinâmica de sistemas vinculados. Mostraremos uma aplicação dessa teoria de vínculos no modelo BF da teoria de campos. Para finalizar, trataremos da Termodinâmica Axiomática de Carathéodory e também da teoria de Hamilton-Jacobi na Termodinâmica, o que é válido para ilustrar a grande abrangência desse formalismo / Abstract: The Hamilton-Jacobi theory is usually presented as an extension of the Hamilton's theory through the canonical transformations. However, the mathematician Constantin Carathéodory showed this theory, its existence and validity, is independent of the Hamiltonian formalism. In this work, we present the Caratheodory's approach to the Hamilton-Jacobi theory. From this procedure, we build a theory of constraints which can solve problems with involutive and non-involutive constraints. For this, we analyze the integrability of the equations and introduce the operation of the generalized brackets that, instead of Poisson brackets, will describe the dynamics of constrained systems. We show an application of this theory in BF model of the field theory. Finally, we will discuss the Carathéodory's Axiomatic Thermodynamics and also show the Hamilton-Jacobi theory in Thermodynamics, which is valid to illustrate the wide coverage of this formalism / Mestre
7

Estudo sobre a teoria de vínculos de Hamilton-Jacobi

Maia, Natália Tenório [UNESP] 07 March 2013 (has links) (PDF)
Made available in DSpace on 2015-12-10T14:23:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-03-07. Added 1 bitstream(s) on 2015-12-10T14:27:52Z : No. of bitstreams: 1 000852795.pdf: 576204 bytes, checksum: 28ede436e9367885bc3b672b1903caad (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A teoria de Hamilton-Jacobi geralmente é apresentada como uma extensão da teoria de Hamilton através das transformações canônicas. No entanto, o matemático Constantin Carathéodory mostrou que essa teoria, sua existência e validade, independem do formalismo hamiltoniano. Neste trabalho, apresentaremos a abordagem de Carathéodory para a teoria de Hamilton-Jacobi. Partindo desse procedimento, construiremos uma teoria de vínculos para que se possa resolver problemas com vínculos involutivos e não-involutivos. Para isso, analisaremos a integrabilidade das equações e introduziremos a operação dos parênteses generalizados que, no lugar do parênteses de Poisson, passará a descrever a dinâmica de sistemas vinculados. Mostraremos uma aplicação dessa teoria de vínculos no modelo BF da teoria de campos. Para finalizar, trataremos da Termodinâmica Axiomática de Carathéodory e também da teoria de Hamilton-Jacobi na Termodinâmica, o que é válido para ilustrar a grande abrangência desse formalismo / The Hamilton-Jacobi theory is usually presented as an extension of the Hamilton's theory through the canonical transformations. However, the mathematician Constantin Carathéodory showed this theory, its existence and validity, is independent of the Hamiltonian formalism. In this work, we present the Caratheodory's approach to the Hamilton-Jacobi theory. From this procedure, we build a theory of constraints which can solve problems with involutive and non-involutive constraints. For this, we analyze the integrability of the equations and introduce the operation of the generalized brackets that, instead of Poisson brackets, will describe the dynamics of constrained systems. We show an application of this theory in BF model of the field theory. Finally, we will discuss the Carathéodory's Axiomatic Thermodynamics and also show the Hamilton-Jacobi theory in Thermodynamics, which is valid to illustrate the wide coverage of this formalism / CNPq: 133488/2011-0
8

O princípio variacional de Kohn complexo para solução de equação de Lippmann-Schwinger com potencial tensorial

Araújo Júnior, Carlos Fernando de [UNESP] January 1993 (has links) (PDF)
Made available in DSpace on 2016-01-13T13:27:00Z (GMT). No. of bitstreams: 0 Previous issue date: 1993. Added 1 bitstream(s) on 2016-01-13T13:31:22Z : No. of bitstreams: 1 000112761.pdf: 1414514 bytes, checksum: 32dcdc979c30338d3e9c963ea7c498d2 (MD5)
9

Estudo clássico completo do formalismo de Hamilton-Jacobi

Valcárcel Flores, Carlos Enrique [UNESP] 17 August 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-08-17Bitstream added on 2014-06-13T20:27:17Z : No. of bitstreams: 1 valcarcelflores_ce_dr_ift.pdf: 694272 bytes, checksum: e1b097c2bc884f3cf2ae38593c38d4ba (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta tese, apresentamos a formulação clássica completa da teoria de Hamilton-Jacobi para sistemas vinculados. Usando o método de Lagrangianas Equivalentes de Carathéodory obtemos um conjunto de Equações Diferenciais Parciais de Hamilton-Jacobi, também chamado de Hamiltonianos. A Condição de Integrabilidade nos permite dividir os Hamiltonianos entre involutivos e não-involutivos. Construímos os Parênteses Generalizados a fim de eliminar os Hamiltonianos não-involutivos, enquanto que relacionamos os Hamiltonianos involutivos com o Gerador das transformações canônicas. Por outro lado, a Equação de Lie é resultado da realização das variações totais no funciona lde ação, e que é relacionada às simetrias da teoria. Usamos a Equação de Lie e a estrutura das Equaçõoes Características, que indicam a evolução dinâmica do sistemas, para associar o Gerador de transformações canônicas às simetrias de calibre. Aplicamos o formalismo de Hamilton-Jacobi ao modelo da Mecânica Quântica Topologica, ao modelo BF bi-dimensional equivalente à Teoria de Jackiw-Teitelboim, ao campo de Yang-Mills Topologicamente Massivo e seu equivalente Auto-dual, assim como para o campo da Gravitação linearizada / It is presented the complete classical formulation of the Hamilton-Jacobi theory for constrained systems. From fixed point variations and using the Carathéodory’s method of Equivalent Lagrangian we obtain a set of Hamilton-Jacobi Partial Differential Equations, also called Hamiltonians. The Integrability Condition allow us to divide the Hamiltonians between involutive and non-involutive ones. We build the Generalized Brackets in order to eliminate the non-involutive Hamiltonians, whereas we relate the involutive Hamiltonians to the Generator of Canonical Transformations. On the other hand, we build the Lie Equation, result of perform total variations to the action functional and which is related to the symmetries of the theory. We use the Lie equation along with the structure of the Characteristic Equations, related to the dynamical evolution of the systems, to associate the Generator of Canonical Transformation to Gaugesymmetries. We apply this formalism to the Topologically Quantum Mechanics, the two dimensional BF model equivalent to the Jackiw-Teitelboim theory, the Topologically Massive Yang-Mills field as well as its correspondent self-dual and to the Linearized Gravity field
10

Estudo clássico completo do formalismo de Hamilton-Jacobi /

Valcárcel Flores, Carlos Enrique. January 2012 (has links)
Orientador: Bruto Max Pimentel Escobar / Banca: Abraham Zimerman / Banca: Denis Dalmazi / Banca: Ion Vasile Vancea / Banca: Vladislav Kupriyanov / Resumo: Nesta tese, apresentamos a formulação clássica completa da teoria de Hamilton-Jacobi para sistemas vinculados. Usando o método de Lagrangianas Equivalentes de Carathéodory obtemos um conjunto de Equações Diferenciais Parciais de Hamilton-Jacobi, também chamado de Hamiltonianos. A Condição de Integrabilidade nos permite dividir os Hamiltonianos entre involutivos e não-involutivos. Construímos os Parênteses Generalizados a fim de eliminar os Hamiltonianos não-involutivos, enquanto que relacionamos os Hamiltonianos involutivos com o Gerador das transformações canônicas. Por outro lado, a Equação de Lie é resultado da realização das variações totais no funciona lde ação, e que é relacionada às simetrias da teoria. Usamos a Equação de Lie e a estrutura das Equaçõoes Características, que indicam a evolução dinâmica do sistemas, para associar o Gerador de transformações canônicas às simetrias de calibre. Aplicamos o formalismo de Hamilton-Jacobi ao modelo da Mecânica Quântica Topologica, ao modelo BF bi-dimensional equivalente à Teoria de Jackiw-Teitelboim, ao campo de Yang-Mills Topologicamente Massivo e seu equivalente Auto-dual, assim como para o campo da Gravitação linearizada / Abstract: It is presented the complete classical formulation of the Hamilton-Jacobi theory for constrained systems. From fixed point variations and using the Carathéodory's method of Equivalent Lagrangian we obtain a set of Hamilton-Jacobi Partial Differential Equations, also called Hamiltonians. The Integrability Condition allow us to divide the Hamiltonians between involutive and non-involutive ones. We build the Generalized Brackets in order to eliminate the non-involutive Hamiltonians, whereas we relate the involutive Hamiltonians to the Generator of Canonical Transformations. On the other hand, we build the Lie Equation, result of perform total variations to the action functional and which is related to the symmetries of the theory. We use the Lie equation along with the structure of the Characteristic Equations, related to the dynamical evolution of the systems, to associate the Generator of Canonical Transformation to Gaugesymmetries. We apply this formalism to the Topologically Quantum Mechanics, the two dimensional BF model equivalent to the Jackiw-Teitelboim theory, the Topologically Massive Yang-Mills field as well as its correspondent self-dual and to the Linearized Gravity field / Doutor

Page generated in 0.0976 seconds