• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Symmetry and singularities for some semilinear elliptic problems

Sintzoff, Paul 06 December 2005 (has links)
The thesis presents the results of our research on symmetry for some semilinear elliptic problems and on existence of solution for quasilinear problems involving singularities. The text is composed of two parts, each of which begins with a specific introduction. The first part is devoted to symmetry and symmetry-breaking results. We study a class of partial differential equations involving radial weights on balls, annuli or $R^N$ --where these weights are unbounded--. We show in particular that on unbounded domains, focusing on symmetric functions permits to recover compactness, which implies existence of solutions. Then, we stress the fact that symmetry-breaking occurs on bounded domains, depending both on the weights and on the nonlinearity of the equation. We also show that for the considered class of problems, the multibumps-solution phenomenon appears on the annulus as well as on the ball. The second part of the thesis is devoted to partial and ordinary differential equations with singularities. Using concentration-compactness tools, we show that a rather large class of functionals is lower semi-continuous, leading to the existence of a ground state solution. We also focus on the unicity of solutions for such a class of problems.

Page generated in 0.0934 seconds