• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 34
  • 22
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 232
  • 232
  • 49
  • 44
  • 40
  • 38
  • 36
  • 36
  • 34
  • 32
  • 31
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Verification and Scheduling Techniques for Real-Time Embedded Systems

Cortés, Luis Alejandro January 2005 (has links)
<p>Embedded computer systems have become ubiquitous. They are used in a wide spectrum of applications, ranging from household appliances and mobile devices to vehicle controllers and medical equipment. This dissertation deals with design and verification of embedded systems, with a special emphasis on the real-time facet of such systems, where the time at which the results of the computations are produced is as important as the logical values of these results. Within the class of real-time systems two categories, namely hard real-time systems and soft real-time systems, are distinguished and studied in this thesis.</p><p>First, we propose modeling and verification techniques targeted towards hard real-time systems, where correctness, both logical and temporal, is of prime importance. A model of computation based on Petri nets is defined. The model can capture explicit timing information, allows tokens to carry data, and supports the concept of hierarchy. Also, an approach to the formal verification of systems represented in our modeling formalism is introduced, in which model checking is used to prove whether the system model satisfies its required properties expressed as temporal logic formulas. Several strategies for improving verification efficiency are presented and evaluated.</p><p>Second, we present scheduling approaches for mixed hard/soft real-time systems. We study systems that have both hard and soft real-time tasks and for which the quality of results (in the form of utilities) depends on the completion time of soft tasks. Also, we study systems for which the quality of results (in the form of rewards) depends on the amount of computation allotted to tasks. We introduce quasi-static techniques, which are able to exploit at low cost the dynamic slack caused by variations in actual execution times, for maximizing utilities/rewards and for minimizing energy.</p><p>Numerous experiments, based on synthetic benchmarks and realistic case studies, have been conducted in order to evaluate the proposed approaches. The experimental results show the merits and worthiness of the techniques introduced in this thesis and demonstrate that they are applicable on real-life examples.</p>
112

Optimizing performance/watt of embedded SIMD multiprocessors through a priori application guided power scheduling

Albright, Ryan K. 20 April 2012 (has links)
A method for improving performance/watt of an embedded single-instruction multiple-data (SIMD) architecture using application-guided a priori scheduling of hardware resources is presented. A multi-core architectural simulator is adopted that accurately estimates power, performance, and utilization of various processor components (logic, interconnect and memory). A greedy search is then performed on each algorithm block of a signal processing chain in order to schedule each component's throughput and power. The proposed software-directed hardware rebalancing, applied to a typical electroencephalography (EEG) filtering chain, is analyzed for two different SIMD architectures. The first, representing a super V[subscript th] processor demonstrates a 51%-86% improvement in performance/watt at 1%-10% throughput reduction using block level or algorithm level a priori scheduling. The second architecture used is Synctium, a near V[subscript th] processor which demonstrates 50%-99% performance/watt improvement across the same throughput reduction range and optimization techniques. / Graduation date: 2012
113

Medium access control and networking protocols for the intra-body network /

Stucki, Eric Thomas, January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2006. / Includes bibliographical references (p. 225-229).
114

A domain-specific embedded language for probabilistic programming

Kollmansberger, Steven 19 December 2005 (has links)
Graduation date: 2006 / Functional programming is concerned with referential transparency, that is, given a certain function and its parameter, that the result will always be the same. However, it seems that this is violated in applications involving uncertainty, such as rolling a dice. This thesis defines the background of probabilistic programming and domain-specific languages, and builds on these ideas to construct a domain-specific embedded language (DSEL) for probabilistic programming in a purely functional language. This DSEL is then applied in a real-world setting to develop an application in use by the Center for Gene Research at Oregon State University. The process and results of this development are discussed.
115

Verification and Scheduling Techniques for Real-Time Embedded Systems

Cortés, Luis Alejandro January 2005 (has links)
Embedded computer systems have become ubiquitous. They are used in a wide spectrum of applications, ranging from household appliances and mobile devices to vehicle controllers and medical equipment. This dissertation deals with design and verification of embedded systems, with a special emphasis on the real-time facet of such systems, where the time at which the results of the computations are produced is as important as the logical values of these results. Within the class of real-time systems two categories, namely hard real-time systems and soft real-time systems, are distinguished and studied in this thesis. First, we propose modeling and verification techniques targeted towards hard real-time systems, where correctness, both logical and temporal, is of prime importance. A model of computation based on Petri nets is defined. The model can capture explicit timing information, allows tokens to carry data, and supports the concept of hierarchy. Also, an approach to the formal verification of systems represented in our modeling formalism is introduced, in which model checking is used to prove whether the system model satisfies its required properties expressed as temporal logic formulas. Several strategies for improving verification efficiency are presented and evaluated. Second, we present scheduling approaches for mixed hard/soft real-time systems. We study systems that have both hard and soft real-time tasks and for which the quality of results (in the form of utilities) depends on the completion time of soft tasks. Also, we study systems for which the quality of results (in the form of rewards) depends on the amount of computation allotted to tasks. We introduce quasi-static techniques, which are able to exploit at low cost the dynamic slack caused by variations in actual execution times, for maximizing utilities/rewards and for minimizing energy. Numerous experiments, based on synthetic benchmarks and realistic case studies, have been conducted in order to evaluate the proposed approaches. The experimental results show the merits and worthiness of the techniques introduced in this thesis and demonstrate that they are applicable on real-life examples.
116

Storage Management for Embedded SIMD Processors

Ryu, Soojung 17 December 2003 (has links)
SIMD parallelism offers a high performance and efficient execution approach for today's broad range of portable multimedia consumer products. However, new methods are needed to meet the complex demands of high performance, embedded systems. This research explores new storage management techniques for this focused but critical application. These techniques include memory design exploration based on the application retargeting technique, storage-based systolic instruction broadcast, and systolic virtual memory to improve both the performance and efficiency of embedded SIMD systems. For an efficient storage usage by memory design space exploration in embedded SIMD systems, an analysis method for assessing storage needs and costs of a given application automatically retargeted across a spectrum of storage configuration designs was developed. Using this technique, a SIMD processing element achieves optimal area and energy efficiency with a register file containing between 8 and 12 words for given workload. This configuration is between 15% and 25% more area and energy efficient than other memory configurations being considered. Systolic instruction broadcast is a high performance and area efficient instruction broadcasting scheme with short-wire interconnects by eliminating of wire latency bottleneck found in global instruction broadcast. Three implementation methods are defined and evaluated - software method, 2-write port register file method, and bypass method. In our evaluations, due to the system's short clock cycle time and scheduler, a speedup in system performance of up to 7.5 can be achieved by the year 2010. In addition, speedup of area efficiency also can be achieved up to 7.2 for a given workload. The ability of minimizing off-chip memory access latency while maximizing access frequency by scheduling techniques along with data prefetch techniques in systolic virtual memory mechanism was evaluated using our SIMD-systolic architecture simulator. Results show that, systolic virtual off-chip memory with shared address space can achieve over 50% higher area efficiency than that of an on-chip only system for a matrix multiplication application.
117

Dynamic Memory Management for Embedded Real-Time Multiprocessor System-on-a-Chip

Shalan, Mohamed A. 25 November 2003 (has links)
The aggressive evolution of the semiconductor industry smaller process geometries, higher densities, and greater chip complexity has provided design engineers the means to create complex, high-performance System-on-a-Chip (SoC) designs. Such SoC designs typically have more than one processor and huge (tens of Mega Bytes) amount of memory, all on the same chip. Dealing with the global on-chip memory allocation/deallocation in a dynamic yet deterministic way is an important issue for upcoming billion transistor multiprocessor SoC designs. To achieve this, we propose a memory management hierarchy we call Two-Level Memory Management. To implement this memory management scheme which presents a shift in the way designers look at on-chip dynamic memory allocation we present the System-on-a-Chip Dynamic Memory Management Unit (SoCDMMU) for allocation of the global on-chip memory, which we refer to as Level Two memory management (Level One is the management of memory allocated to a particular on-chip Processing Element, e.g., an operating systems management of memory allocated to a particular processor). In this way, processing elements (heterogeneous or non-heterogeneous hardware or software) in an SoC can request and be granted portions of the global memory in a fast and deterministic time. A new tool is introduced to generate a custom optimized version of the SoCDMMU hardware. Also, a real-time operating system is modified support the new proposed SoCDMMU. We show an example where shared memory multiprocessor SoC that employs the Two-Level Memory Management and utilizes the SoCDMMU has an overall average speedup in application transition time as well as normal execution time.
118

Design-for-testability techniques for deep submicron technology /

Das, Debaleena. January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 81-85). Available also in a digital version from Dissertation Abstracts.
119

Silicon primitives for machine learning /

Hsu, David, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 118-130).
120

High performance embedded reconfigurable computing: data security and media processing applications

Kwok, Tai-on, Tyrone., 郭泰安. January 2005 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Master / Master of Philosophy

Page generated in 0.093 seconds