• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation temps-réel embarquée de systèmes électriques au moyen de FPGA / FPGA-based Embedded real time simulation of electrical systems

Dagbagi, Mohamed 08 October 2015 (has links)
L'objectif de ce travail de thèse est de développer une bibliothèque de modules IPs (Intellectual Properties) de simulateurs temps réel embarqués qui simulent différents éléments d'un système électrique. Ces modules ont été conçus pour être utiliser non seulement pour une validation HIL (Hardware-In-the-Loop) des commandes numériques mais aussi pour des applications de commande embarquées, où le module IP de simulateur et le contrôleur sont tous les deux implémentés et exécutés dans la même cible FPGA. Cette nouvelle classe de simulateurs temps réel devrait être de plus en plus incluse dans la prochaine génération de contrôleurs numériques. En effet, ces modules IPs de simulateurs temps réel embarqués peuvent être avantageusement intégrés dans les contrôleurs numériques pour assurer des fonctions comme l'observation, l'estimation, le diagnostic où la surveillance de la santé. Inversement aux cas de HIL, le principal défi lors de la conception de tels simulateurs est de faire face à leur complexité ayant à l'esprit que, dans le cas des systèmes embarqués, les ressources matérielles disponibles sont limitées en raison du coût. En outre, ce problème est renforcé par la nécessité des pas de simulation très petit. Ceci est généralement le cas lors de la simulation des convertisseurs de puissance.Pour développer ces modules IPs, des lignes directrices dédiés de conception ont été proposées pour être suivies pour gérer la complexité de ces simulateurs (solveur de modèle, solveur numérique, pas de simulation, conditionnement de données) tout en tenant compte des contraintes temporelles et matérielles/coût (temps de calcul limité, ressources matérielles limitées ...).Les modules IPs de simulateurs à développer ont été organisés en deux catégories principales: ceux qui sont consacrées aux éléments électromagnétiques d'un système électrique, et ceux dédiés à ses éléments commutés.La première catégorie regroupe les éléments où les phénomènes électriques, magnétiques sont modélisés en plus de phénomènes mécaniques (pour les parties mécaniques) et des phénomènes potentiellement thermiques. Trois cas sont traités: le simulateur temps réel embarqué d'une machine synchrone triphasée, celui d'une machine asynchrone triphasée et celui d'un alternateur synchrone à trois étages. En plus de cela, les avantages de l'utilisation de la transformation delta pour améliorer la stabilité du solveur numérique lorsque un petit pas de calcul et le codage virgule fixe (avec une précision de données limitée) sont utilisés, ont été étudiés.La deuxième catégorie concerne des éléments commutés tels que les convertisseurs de puissance où les événements de commutation sont considérés. Là encore, plusieurs topologies de convertisseurs ont été étudiées: un redresseur simple alternance, un hacheur série, un hacheur réversible en courant, un hacheur quatre quadrant, un onduleur monophasé, un onduleur triphasé, un redresseur à diodes triphasé et un redresseur MLI triphasé. Pour tous ces modules IPs de simulateurs, l'approche de modélisation ADC (Associated Discrete Circuit) est adoptée.Le module IP de simulateur temps réel embarqué du redresseur MLI a été appliqué dans un contexte d'une application embarquée. Cette dernière consiste en une commande tolérante aux défauts d'un convertisseur de tension coté réseau. Ainsi, ce module IP est associé à celui d'un simulateur temps réel d'un filtre RL triphasé et les deux sont embarqués dans le dispositif de commande du redresseur pour estimer les courants de lignes. Ces courants sont injectés dans le dispositif de commande dans le cas d'un défaut de capteur de courant. La capacité de cet estimateur de garantir la continuité de service en cas de défauts est validée par des tests HIL et expérimentalement. / The aim of this thesis work is to develop an IP-Library of FPGA-based embedded real-time simulator IPs (Intellectual Properties) that simulate different elements of an electrical system. These IPs have been designed to be used not only for Hardware-In-the-Loop (HIL) testing of digital controllers but also for low cost embedded control applications, where the simulator IP and the controller are both implemented and run altogether in the same FPGA device. This emerging class of real-time simulators is expected to be more and more included in the next generation of digital controllers. Indeed, such embedded real-time simulator IPs can be advantageously embedded within digital controllers to ensure functions like observation, estimation, diagnostic or health-monitoring. Conversely to the HIL case, the main challenge when designing such simulator IPs is to cope with their complexity having in mind that, in the case of embedded systems, the available hardware resources are limited due to the cost. Furthermore, this challenge is strengthened by the need of very short simulation time-steps which is typically the case when simulating power converters.To develop these IPs, dedicated design guidelines have been proposed to be followed to manage the complexity of these simulator IPs (model solver, numerical solver, time-step, data conditioning) with regards to the timing and the area/cost constraints (computation time limit, limited hardware resources …).The simulators IPs to be developed have been organized into two main categories: those dedicated to electromagnetic elements of an electrical system and those dedicated to their switching elements.The first category gathers elements where electric, magnetic phenomena are modelized in addition to mechanical phenomena (for moving systems) and potentially thermal phenomena. Three cases are dealt with: the embedded real-time simulator of a three-phase synchronous machine, the one of a three-phase induction machine and the one of a brushless synchronous generator. Also, the advantages of using delta transformation to improve the stability of the numerical solver when short simulation time-step and fixed-point (with limited data precision) are used, have been studied.The second category concerns switching elements such as power converters where switching events are considered. Here again, several converter topologies have been studied: a half-wave rectifier, a buck DC-DC converter, a bidirectional buck DC-DC converter, a H-bridge DC-DC converter, a single-phase H-bridge DC-AC converter, a three-phase voltage source inverter, a three-phase diode rectifier and a three-phase PWM rectifier. For all these IPs, the Associated Discrete Circuit (ADC) modeling approach is adopted.The embedded real-time simulator IP of the three-phase PWM rectifier has been applied in the context of an embedded application. The latter consists of a fault-tolerant control of a grid-connected voltage source rectifier. Thus, this simulator IP is associated with the one of a three-phase RL-filter and are both implemented within the rectifier controller to estimate the grid currents. These currents are injected in the controller in the case of a current sensor fault. The ability of this estimator to guarantee the service continuity in the case of faults is validated through HIL tests and experiments.

Page generated in 0.0782 seconds