• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 393
  • 137
  • 46
  • 40
  • 40
  • 16
  • 15
  • 13
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 898
  • 536
  • 489
  • 254
  • 233
  • 118
  • 102
  • 81
  • 70
  • 60
  • 58
  • 56
  • 55
  • 54
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Properties of embryonic stem cells from Rattus norvegicus

Blair, Kathryn Lee January 2012 (has links)
No description available.
82

Development of embryonic stem cells expressing endogenous levels of a fluorescent protein fused to the telomere binding protein TRF1

Miller, Shelley Bonnie 11 1900 (has links)
Telomeres are the repetitive DNA sequence and associated proteins found at the ends of linear chromosomes. They have a role in biological processes including meiosis and aging as well as implications in a number of genomic instability disorders and cancers. Telomeres maintain genomic stability by protecting chromosome ends from terminal fusions and misidentification as DNA damage sites. Their wide range of functions has resulted in an increased interest in developing tools to study the dynamics of telomeres in live cells. To do this, current studies use the ubiquitously expressed protein Telomere Repeat Factor 1 (TRF1) tagged with a fluorescent protein. TRF1 is a negative regulator of telomere length that binds exclusively to telomere repeats. Over-expression of the fluorescent protein fused to TRF1 has been a useful tool to track telomere movement. The foci formed by the tagged TRF1 protein accurately represent the number of telomeres expected in the cells and the localization is maintained throughout the cell cycle. A caveat with this system is that over-expression of TRF1 leads to accelerated telomere shortening, as well as replication defects that can stall telomere replication. These caveats make it difficult to draw conclusions about telomere dynamics based solely on observations of cells over-expressing fluorescently tagged TRF1. To eliminate problems associated with protein over-expression, I have tried to develop knock-in embryonic stem (ES) cells expressing fluorescently tagged TRF1 from the endogenous Trf1 promoter. To do this, I have used a recombineering technique using Bacterial Artificial Chromosomes (BACs). BAC recombineering allows for the direct knock-in of a fluorescent tag into the mouse Trf1gene locus. Genetic constructs with the correct sequence inserts have been obtained and have been used for transfection of ES cells. While no correctly targeted ES cells have been identified so far, the expectation is that ES cell lines with correctly targeted fluorescently tagged TRF1 will be obtained in the near future. Such lines will be used to study telomere dynamics in ES cells, differentiated cells generated from ES cells, as well as to generate mice.
83

Regulation of Porcine Conceptus Survival and Growth by L-arginine

Li, Xilong 2011 December 1900 (has links)
This study was conducted to test the hypothesis that dietary supplementation with L-arginine during early pregnancy will ameliorate embryonic loss in pigs. Gilts were bred at the second estrus, and housed individually in pens and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0%, 0.4%, or 0.8% L-arginine (w/w) between d 0 and 25 of gestation (Experiment 1) or between d 14 and 25 of gestation (Experiments 2 and 3). At d 25 (Experiment 1 and 2) or d 60 (Experiment 3) of gestation, gilts were hysterectomized to obtain uteri and conceptuses. Total RNA and protein were extracted from the frozen tissues. Quantitative RT-PCR, western blotting, and microarray analyses were performed to determine the changes of gene expression at mRNA and protein levels. Dietary supplementation with 0.8% L-arginine between d 0 and 25 of gestation decreased uterine weight, total number of fetuses, number of corpora lutea (CL), total fetal weight, total volume of allantoic and amniotic fluids, concentrations of progesterone in maternal plasma and allantoic fluid, compared to the control group. However, dietary supplementation with 0.4% or 0.8% L-arginine between d 14 and 25 of gestation increased total volume of amniotic fluid, total amounts of arginine in allantoic and amniotic fluids, total amounts of fructose and most amino acids in amniotic fluid, placental growth, and the number of viable fetuses per litter by 2. Dietary supplementation with 0.4% or 0.8% L-arginine between d 14 and 25 of gestation increased the total number of fetuses and number of live fetuses, rate of embryonic survival, and volumes of allantoic and amniotic fluids in gilts with 15 to 18 CL on d 60 of gestation compared with the control group. The abundance of placental protein and expression of mRNA related to the genes for arginine transport and metabolism, including cationic amino acid transporter 1, endothelial nitric oxide synthase (NOS3), phosphorylated-NOS3, ornithine decarboxylase, and guanosine triphosphate cyclohydrolase-I was increased by dietary supplementation with 0.8% L-arginine between d 0 and 25 of gestation. The abundance of total and phosphorylated mechanistic target of rapamycin was also enhanced by dietary 0.8% L-arginine supplementation between d 0 and 25 of gestation. Microarray analysis revealed that supplementation with 0.8% arginine between d 14 and 25 of gestation affected placental expression of 575 genes. Findings from the current study not only advance basic knowledge of mammalian reproductive biology, but also have important implications for developing practical means to enhance fertility in female pigs.
84

Cardiac Tissue Engineering

Dawson, Jennifer Elizabeth 24 June 2011 (has links)
The limited treatment options available for heart disease patients has lead to increased interest in the development of embryonic stem cell (ESC) therapies to replace heart muscle. The challenges of developing usable ESC therapeutic strategies are associated with the limited ability to obtain a pure, defined population of differentiated cardiomyocytes, and the design of in vivo cell delivery platforms to minimize cardiomyocyte loss. These challenges were addressed in Chapter 2 by designing a cardiomyocyte selectable progenitor cell line that permitted evaluation of a collagen-based scaffold for its ability to sustain stem cell-derived cardiomyocyte function (“A P19 Cardiac Cell Line as a Model for Evaluating Cardiac Tissue Engineering Biomaterials”). P19 cells enriched for cardiomyocytes were viable on a transglutaminase cross-linked collagen scaffold, and maintained their cardiomyocyte contractile phenotype in vitro while growing on the scaffold. The potential for a novel cell-surface marker to purify cardiomyocytes within ESC cultures was evaluated in Chapter 3, “Dihydropyridine Receptor (DHP-R) Surface Marker Enrichment of ES-derived Cardiomyocytes”. DHP-R is demonstrated to be upregulated at the protein and RNA transcript level during cardiomyogenesis. DHP-R positive mouse ES cells were fluorescent activated cell sorted, and the DHP-R positive cultured cells were enriched for cardiomyocytes compared to the DHP-R negative population. Finally, in Chapter 4, mouse ESCs were characterized while growing on a clinically approved collagen I/III-based scaffold modified with the RGD integrin-binding motif, (“Collagen (+RGD and –RGD) scaffolds support cardiomyogenesis after aggregation of mouse embryonic stem cells”). The collagen I/III RGD+ and RGD- scaffolds sustained ESC-derived cardiomyocyte growth and function. Notably, no significant differences in cell survival, cardiac phenotype, and cardiomyocyte function were detected with the addition of the RGD domain to the collagen scaffold. Thus, in summary, these three studies have resulted in the identification of a potential cell surface marker for ESC-derived cardiomyocyte purification, and prove that collagen-based scaffolds can sustain ES-cardiomyocyte growth and function. This has set the framework for further studies that will move the field closer to obtaining a safe and effective delivery strategy for transplanting ESCs onto human hearts.
85

EFFECTS OF EMBRYONIC EXPOSURE TO PREDATOR CUES ON PRE- AND POST-HATCHING ANTIPREDATOR BEHAVIOUR IN COMMON CUTTLEFISH (SEPIA OFFICINALIS)

2014 December 1900 (has links)
Since neonates are often the age-class most susceptible to predation, there should be strong selective pressure on prey for the early development of successful antipredator behaviour. The ability to assess predation risk as early as the embryonic stages may increase an individual’s survival, as it would allow young individuals to be better adapted to current predation risk, since present conditions are often a good short-term indicator of future conditions. I exposed embryonic cuttlefish (Sepia officinalis) to the odour of a predator and tested both the responses of the embryos to this stimulus, and the latent effects of both long (approximately 3 weeks)- and short (a few days)- exposure on the behaviour of newly-hatched juveniles, in particular the efficiency of cryptic behaviour on uniform and sandy substrates. Exposure to novel odours, whether they were predators or non-predators, increased the ventilation rate of embryos. This may be adaptive, because it helps an individual survive first encounters with unknown potential dangers before they have opportunity to collect information about a novel stimulus. Long-term exposure to predator odour increased the camouflage efficiencies of juveniles on uniform substrates. On sandy substrate, the exposure did not affect camouflage, but increased the extent of sand digging behaviour. Juveniles were also larger in size at hatching when exposed to predators compared to those that were not. These results were not seen in individuals with only short-term exposure to predator. Short-term exposure also had no effect on camouflage efficiencies on uniform or sandy substrates, or on sand digging behaviour. The results of my thesis indicate that high predation risk during embryonic development induces behavioural and morphological changes in camouflage expression and body size in cuttlefish hatchlings. The behavioural plasticity may provide survival benefits for newly hatched individuals, but may come at a cost in terms of body size. Such behavioural and morphological plasticity may have an impact on predator-prey dynamics and organization of communities.
86

Optimal Population of Embryonic Stem Cells in "Hanging Drop" Culture for in-vitro Differentiation to Cardiac Myocytes

MIWA, Keiko, LEE, Jong-Kook, HIDAKA, Kyoko, SHI, Rong-qian, MORISAKI, Takayuki, KODAMA, Itsuo 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
87

Development of embryonic stem cells expressing endogenous levels of a fluorescent protein fused to the telomere binding protein TRF1

Miller, Shelley Bonnie 11 1900 (has links)
Telomeres are the repetitive DNA sequence and associated proteins found at the ends of linear chromosomes. They have a role in biological processes including meiosis and aging as well as implications in a number of genomic instability disorders and cancers. Telomeres maintain genomic stability by protecting chromosome ends from terminal fusions and misidentification as DNA damage sites. Their wide range of functions has resulted in an increased interest in developing tools to study the dynamics of telomeres in live cells. To do this, current studies use the ubiquitously expressed protein Telomere Repeat Factor 1 (TRF1) tagged with a fluorescent protein. TRF1 is a negative regulator of telomere length that binds exclusively to telomere repeats. Over-expression of the fluorescent protein fused to TRF1 has been a useful tool to track telomere movement. The foci formed by the tagged TRF1 protein accurately represent the number of telomeres expected in the cells and the localization is maintained throughout the cell cycle. A caveat with this system is that over-expression of TRF1 leads to accelerated telomere shortening, as well as replication defects that can stall telomere replication. These caveats make it difficult to draw conclusions about telomere dynamics based solely on observations of cells over-expressing fluorescently tagged TRF1. To eliminate problems associated with protein over-expression, I have tried to develop knock-in embryonic stem (ES) cells expressing fluorescently tagged TRF1 from the endogenous Trf1 promoter. To do this, I have used a recombineering technique using Bacterial Artificial Chromosomes (BACs). BAC recombineering allows for the direct knock-in of a fluorescent tag into the mouse Trf1gene locus. Genetic constructs with the correct sequence inserts have been obtained and have been used for transfection of ES cells. While no correctly targeted ES cells have been identified so far, the expectation is that ES cell lines with correctly targeted fluorescently tagged TRF1 will be obtained in the near future. Such lines will be used to study telomere dynamics in ES cells, differentiated cells generated from ES cells, as well as to generate mice.
88

Molecular characterization of the CP2-related transcription factor, CRTR-1.

To, Sarah January 2009 (has links)
CRTR-1 is a member of the CP2 family of transcription factors. Unlike other CP2 family members, CRTR-1 expression is regulated developmentally. Major sites of expression in the embryo include the pluripotent inner cell mass (ICM) of the pre-implantation blastocyst and the developing kidney. It is also expressed in embryonic stem (ES) cells, which are derived from the ICM of blastocysts, and is downregulated as these cells differentiate into early primitive ectoderm-like (EPL) cells. This expression pattern suggests that CRTR-1 plays a role in early pluripotent populations. This thesis aims to characterize the transcription factor CRTR-1 at the molecular level and analyses the role of sumoylation on CRTR-1 function to develop a better understanding of the molecular role of CRTR-1 in ES cells. Luciferase reporter assays show that CRTR-1 is able to regulate the activities of other CP2 family members: CP2, NF2d9 and altNF2d9. It enhances CP2- and NF2d9-mediated activation but suppresses altNF2d9-mediated activation. To map the functional domains in the CRTR-1 protein, transactivation studies using CRTR-1 deletion mutants fused to the GAL4 DNA binding domain and a GAL4-responsive reporter system were performed. These studies map repressor activity to amino acids 48-200, but fail to identify a transactivation domain within the CRTR-1 protein. In order to understand the mechanisms by which CRTR-1 regulates the transcriptional activities of CP2 family members, a number of approaches are taken, including co-immunoprecipitation to show that CRTR-1 interacts with other CP2-like proteins, EMSA which demonstrate that CRTR-1 forms DNA binding complexes with CP2 family members, and subcellular protein localisation studies which reveal the ability of CRTR-1 and other family members to shuttle between the nucleus and cytoplasm via a CRM1-dependent pathway. In addition, the subcellular localisation of CRTR-1 appears to be cell type specific, with an exclusively nuclear localisation pattern in ES cells, a predominantly cytoplasmic localisation pattern in HEK293T cells, and a cytoplasmic and nuclear speckle localisation pattern in COS-1 cells. Co-expression of CRTR-1 with CP2 or NF2d9 results in the re-localisation of CRTR-1 to the cytoplasm in ES cells. The sumoylation enzymes Ubc9 and PIAS1 have previously been identified as CP2-interacting proteins (Kang et al., 2005a). Given the identification of two potential sumoylation sites within CRTR-1, FK³⁰ QE and LK⁴⁶ ⁴AE, and the ability for sumoylation to regulate transcription factor function, the possibility that CRTR-1 is regulated by sumoylation is investigated in this thesis. Immunoprecipitation experiments show that CRTR-1 is modified by SUMO-1 and that lysine 30 is the critical residue for this modification. Mutation of lysine 30 to alanine, which abolishes CRTR-1 sumoylation, results in enhancement of transactivation by CRTR-1, suggesting that sumoylation of CRTR-1 blocks maximal activation. Unexpectedly, however, overexpression of Ubc9, PIAS1, or SUMO-1 results in enhancement of CRTR-1 transcriptional activity, indicating that a more complex mechanism of regulation of CRTR-1 activity is likely. This thesis presents several novel properties of CRTR-1 and other CP2 family members, including the ability of CRTR-1, previously characterized as a repressor, to activate transcription. It is also the first demonstration that CP2 proteins are regulated by sumoylation and that they shuttle between the nucleus and cytoplasm via a CRM1-dependent mechanism. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1374290 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
89

Molecular characterization of the CP2-related transcription factor, CRTR-1.

To, Sarah January 2009 (has links)
CRTR-1 is a member of the CP2 family of transcription factors. Unlike other CP2 family members, CRTR-1 expression is regulated developmentally. Major sites of expression in the embryo include the pluripotent inner cell mass (ICM) of the pre-implantation blastocyst and the developing kidney. It is also expressed in embryonic stem (ES) cells, which are derived from the ICM of blastocysts, and is downregulated as these cells differentiate into early primitive ectoderm-like (EPL) cells. This expression pattern suggests that CRTR-1 plays a role in early pluripotent populations. This thesis aims to characterize the transcription factor CRTR-1 at the molecular level and analyses the role of sumoylation on CRTR-1 function to develop a better understanding of the molecular role of CRTR-1 in ES cells. Luciferase reporter assays show that CRTR-1 is able to regulate the activities of other CP2 family members: CP2, NF2d9 and altNF2d9. It enhances CP2- and NF2d9-mediated activation but suppresses altNF2d9-mediated activation. To map the functional domains in the CRTR-1 protein, transactivation studies using CRTR-1 deletion mutants fused to the GAL4 DNA binding domain and a GAL4-responsive reporter system were performed. These studies map repressor activity to amino acids 48-200, but fail to identify a transactivation domain within the CRTR-1 protein. In order to understand the mechanisms by which CRTR-1 regulates the transcriptional activities of CP2 family members, a number of approaches are taken, including co-immunoprecipitation to show that CRTR-1 interacts with other CP2-like proteins, EMSA which demonstrate that CRTR-1 forms DNA binding complexes with CP2 family members, and subcellular protein localisation studies which reveal the ability of CRTR-1 and other family members to shuttle between the nucleus and cytoplasm via a CRM1-dependent pathway. In addition, the subcellular localisation of CRTR-1 appears to be cell type specific, with an exclusively nuclear localisation pattern in ES cells, a predominantly cytoplasmic localisation pattern in HEK293T cells, and a cytoplasmic and nuclear speckle localisation pattern in COS-1 cells. Co-expression of CRTR-1 with CP2 or NF2d9 results in the re-localisation of CRTR-1 to the cytoplasm in ES cells. The sumoylation enzymes Ubc9 and PIAS1 have previously been identified as CP2-interacting proteins (Kang et al., 2005a). Given the identification of two potential sumoylation sites within CRTR-1, FK³⁰ QE and LK⁴⁶ ⁴AE, and the ability for sumoylation to regulate transcription factor function, the possibility that CRTR-1 is regulated by sumoylation is investigated in this thesis. Immunoprecipitation experiments show that CRTR-1 is modified by SUMO-1 and that lysine 30 is the critical residue for this modification. Mutation of lysine 30 to alanine, which abolishes CRTR-1 sumoylation, results in enhancement of transactivation by CRTR-1, suggesting that sumoylation of CRTR-1 blocks maximal activation. Unexpectedly, however, overexpression of Ubc9, PIAS1, or SUMO-1 results in enhancement of CRTR-1 transcriptional activity, indicating that a more complex mechanism of regulation of CRTR-1 activity is likely. This thesis presents several novel properties of CRTR-1 and other CP2 family members, including the ability of CRTR-1, previously characterized as a repressor, to activate transcription. It is also the first demonstration that CP2 proteins are regulated by sumoylation and that they shuttle between the nucleus and cytoplasm via a CRM1-dependent mechanism. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1374290 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
90

Structure and function analysis of the mouse amnionless protein : and its role during gastrulation /

Munoz, Claudia X. January 2009 (has links)
Thesis (Ph. D.)--Cornell University, January, 2009. / Vita. Includes bibliographical references (leaves 180-186).

Page generated in 0.0311 seconds