• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • Tagged with
  • 18
  • 14
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analyse structurale des régions prédites comme dépliées de l’enveloppe nucléaire : exemple de l’émerine et de la lamine A. / Structural analysis of regions predicted as unfolded at the nuclear envelope : example of emerin and lamin A.

Celli, Florian 23 November 2018 (has links)
Les lamines sont le principal composant du nucléosquelette. Elles sont principalement localisées à l’enveloppe nucléaire, où elles interagissent avec la membrane nucléaire interne, les protéines associées à la chromatine ainsi qu’avec des modulateurs de la signalisation cellulaire. Le gène LMNA code pour la prélamine A et la lamine C. La région C-terminale de la prélamine A est prédite pour être désordonnée et est la cible de plusieurs événements de maturation. En effet, la protéine est farnésylée, coupée, carboxyméthylée, puis coupée à nouveau ; perdant finalement son groupement farnésyl. Un mutant de cette protéine, dont 50 acides aminés sont manquants, est responsable du syndrome d’Huchtinson-Gilford, appelé progéria (Eriksson et al., 2003). Chez ce mutant, appelé progérine, le site de coupure finale est absent et la protéine reste constitutivement farnésylée. La lamine A est connue pour interagir avec la protéine de la membrane nucléaire interne, l’émerine. L’absence d’émerine est responsable de la dystrophie musculaire d’Emery Dreifuss. L’émerine contient un LEM, suivi d’une région prédite comme désordonnée, essentielle pour l’auto-assemblage de l’émerine (Berk et al., 2014). L’oligomérisation de l’émerine régule ses interactions avec plusieurs partenaires à la membrane nucléaire interne et à la chromatine. Nous avions auparavant démontré que la région nucléoplasmique de l’émerine peut s’auto-associer pour former des filaments in vitro (Herrada et al., 2015) et nous avons récemment révélé que ces filaments sont capables d’interagir directement avec la queue de la lamine A (Samson et al., 2018). Ici, je me suis intéressé à l’analyse structurale des régions prédites comme désordonnées chez (1) l’émerine (2) la prélamine A. Dans le cas de l’émerine, j’ai analysé la conformation de la région nucléoplasmique d’émerine avant et après auto-assemblage, en travaillant avec l’émerine sauvage et plusieurs mutants entraînant des myopathies. J’ai montré que deux fragments de l’émerine 1-187 et 67-221 peuvent polymériser, tandis que leur région commune 67-187, reste toujours monomérique dans nos conditions (Samson et al., 2018). Nous avons aussi montré que le domaine LEM est au moins partiellement déplié au cours de l’assemblage de la région 1-187. J’ai également attribué les signaux RMN de la région désordonnée 67-170, dans le but d’étudier par la suite l’impact des phosphorylations de cette région sur la structure de l’émerine et sur ses propriétés d’auto-assemblage (Samson et al., 2016). Dans le cas de la lamine A, j’ai étudié la région C-terminale de la prélamine A, prédite comme dépliée et qui est le siège de nombreuses modifications post-traductionnelles. J’ai attribué les signaux RMN du peptide prélamine A ainsi que de son mutant progérine (Celli et al., 2018). J’ai montré que ces deux peptides sont en effet déplés et possèdent une hélice  transitoire très conservée. Je propose cette hélice comme site de liaison pour un partenaire encore non identifié. J’ai également démontré que le peptide prélamine A possède une tendance à s’auto-assembler. Cependant, la prélamine A et le peptide progérine sauvages et farnésylés, n’interagissent pas avec le domaine IgFold de la lamine A ni avec BAF, deux domaines associés avec la progéria. J’ai étudié par la suite les interactions de ces peptides avec deux autres partenaires associés à la progéria : la protéine de la membrane nucléaire interne SUN1 et la protéine associée à la chromatine RBBP4. SUN1 est également intrinsèquement désordonnée et très peu soluble dans nos conditions. Les résultats montrent que le peptide prélamine A ne lie pas RBBP4 mais pourrait avoir besoin de la partie C-terminale qui la précède. Cependant, RBBP4 lie directement le partenaire de la lamine BAF. Sur les bases de ces résultats, je propose une série d’expériences pour identifier les détails moléculaires des interactions entre la queue C-terminale de la lamine A, BAF et RBBP4. / Lamins are the main components of the nucleoskeleton. They are primarily located at the nuclear envelope, where they interact with inner nuclear membrane proteins, chromatin-associated proteins and cell signaling modulators. The LMNA gene codes for prelamin A and lamin C. The C-terminal region of prelamin A is predicted to be unfolded and is the target of several maturation events. Indeed, the protein is farnesylated, cleaved, carboxymethylated and cleaved again; losing eventually its farnesyl group. A mutant of this protein, lacking 50 amino acids, is responsible for the Hutchinson-Gilford Progeria Syndrome (Eriksson et al., Nature 2003). In this mutant, called progerin, the final cleavage site is absent and the protein stays constitutively farnesylated. Lamin A is reported to interact with the inner nuclear membrane protein emerin. Lack of emerin is responsible for Emery Dreifuss Muscular Dystrophy. Emerin contains a folded LEM domain, followed by a region that is predicted to be disordered and is essential for emerin self-assembly (Berk et al., 2014). Emerin oligomerization regulates its interaction with several partners at the inner nuclear membrane and at the chromatin. We previously showed that the nucleoplasmic region of emerin can self-assemble to form curvilinear filaments in vitro (Herrada et al., 2015) and we recently revealed that these filaments are able to directly bind to the lamin A tail (Samson et al., 2018).Here I focused on the structural analysis of regions that are predicted to be unfolded in (1) emerin, (2) prelamin A. In the case of emerin, I analysed the conformation of the nucleoplasmic region of emerin before and after self-assembly, working on wild-type emerin as well as several mutants causing myopathies. I showed that the two fragments of emerin 1-187 and 67-221 were able to self-assemble, whereas their common region, 67-187, is always a monomer in our conditions (Samson et al., 2018). I also revealed that the LEM domain is at least partially unfolded during self-assembly of region 1-187, as a mutant with a destabilized LEM domain self-assembles faster and a mutant with a LEM domain locked in its folded conformation cannot self-assemble (Samson et al., 2017). I also assigned all the NMR signals of the unfolded region 67-170, in order to further study by NMR the impact of phosphorylation of this region on emerin structure and self-assembly properties (Samson et al., 2016). In the case of lamin A, I studied the C-terminal region of prelamin A that is predicted as unfolded and is heavily post-translationally modified. I assigned the NMR signals of this prelamin A peptide as well as its mutant peptide corresponding to the progerin sequence (Celli et al., 2018). I showed that both peptides are indeed unstructured and exhibit a partially populated  helix that has a highly conserved sequence. I propose that this helix is a binding site for a yet unidentified partner. I also revealed that the prelamin A peptide has a tendency to self-assemble. However, the monomeric prelamin A and progerin peptides, wild-type as well as farnesylated, do not interact with the immunoglobulin-like domain of lamin A/C and with BAF, two domains associated with progeria. Then, I investigated the interactions mediated by these peptides and two other important partners associated to progeria: the inner nuclear membrane SUN1 and the chromatin-associated protein RBBP4. However, SUN1 is also intrinsically disordered and poorly soluble in our conditions. First results showed that the prelamin peptide does not bind to RBBP4 but might need the remaining part of the lamin A tail for this interaction. However, RBBP4 directly binds to the lamin partner BAF. Based on my results, I propose a set of experiments to identify the molecular details of the interactions between the lamin A tail, BAF and RBBP4.
12

Analysis of the Interactome and Membrane Insertion of VAPB, a Tail- Anchored Protein at the Inner Nuclear Membrane

James, Christina 09 June 2021 (has links)
No description available.
13

TheRole of Emerin and Other Disease-Associated Genes in Myonuclear Movement and Muscle Development in Drosophila:

Mandigo, Torrey January 2020 (has links)
Thesis advisor: Eric S. Folker / Thesis advisor: David R. Burgess / Skeletal muscle is a multinucleated cell type in which the many nuclei are precisely positioned to maximize the distance between adjacent nuclei. In order to reach this final positioning, nuclei undergo an elaborate set of movements during muscle development. The disruption of this process is evident throughout muscular dystrophies and myopathies. However, the contribution of aberrant nuclear positioning toward disease progression is unclear and the mechanisms regulating nuclear movement and positioning are poorly defined. The goal of this thesis is to determine the contribution of disease-linked genes to the regulation of nuclear movement and positioning and how these mechanisms are coordinated in skeletal muscle. In this thesis, we utilize Drosophila melanogaster skeletal muscle as an in vivo model system to investigate nuclear positioning throughout muscle development and correlate aberrant nuclear positioning with a decrease in muscle function. We provide the first evidence of distinct mechanisms that are independently regulated by genes that are associated with two different muscle diseases, Emery-Dreifuss muscular dystrophy and Centronuclear myopathy (Chapter 2). We also provide evidence that Emerin-dependent regulation of the LINC complex is a critical determinant of nuclear positioning and for the first time demonstrate a division of Emerin functions among the two Drosophila emerin homologs, bocksbeutel and otefin (Chapter 3). Finally, we conduct a proof-of-concept screen to identify novel regulators of muscle development and function (Chapter 4). Together, the work presented in this thesis provides a framework to further our understanding of the mechanisms regulating nuclear movement and positioning as well as muscle development as a whole. Using the tools and techniques developed throughout this thesis, we provide novel insight into the mechanisms regulating nuclear movement and positioning and strengthen Drosophila as an in vivo model for investigating muscle development and function. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
14

Role of WRB protein in cardiac function

Rivera Monroy, Jhon Erick 18 May 2017 (has links)
No description available.
15

DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane Proteins

Levesque, Steve 04 May 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.
16

DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane Proteins

Levesque, Steve 04 May 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.
17

DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane Proteins

Levesque, Steve 04 May 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.
18

DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane Proteins

Levesque, Steve January 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.

Page generated in 0.0647 seconds