• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation de convertisseurs DC-DC SoC (System on Chip) pour l'automobile

Aulagnier, Guillaume 16 April 2015 (has links) (PDF)
L’équipe de conception de Freescale à Toulouse développe des circuits intégrés dédiés au marché de l’automobile pour des applications châssis, sécurité ou loisir. Les contraintes associées à l’embarquement des circuits sont nombreuses : niveau d’intégration, fiabilité, températures élevées, et compatibilité électromagnétique. Les produits conçus par Freescale intègrent des convertisseurs à découpage pour l’alimentation en énergie des microcontrôleurs. Cette thèse a pour objet l’étude de nouvelles topologies de convertisseur d’énergie pour la baisse de l’encombrement et des perturbations électromagnétiques. La structure multiphase répond à la problématique dans son ensemble. Un prototype est réalisé dans une technologie silicium Freescale haute tension 0.25µm. Le volume des composants externes de filtrage est optimisé et réduit. Les mesures sur le prototype montrent des performances en accord avec les objectifs, et des émissions électromagnétiques particulièrement faibles.
2

Design of high frequency operating mechatronic systems : tools and methods of characterization of electromagnetic couplings between electromechanic converters and power electronics converters / Conception d’ensembles mécatroniques à haute fréquence de fonctionnement : outils et méthodes de caractérisation des couplages électromagnétiques entre convertisseur électromécanique et électronique de puissance

Ramos Chavez, Jose Ioav 21 November 2016 (has links)
De l’avion plus électrique, en passant par l’hybridation de véhicules automobiles et jusqu’aux implants cardiaques d’assistance circulatoire, la compacité est devenue le graal de l’électrotechnique embarquée moderne. En effet, la densité de puissance des systèmes électromécaniques ne cesse de s’accroitre. Ainsi, pour répondre aux besoins de forte intégration, les convertisseurs en électronique de puissance trouvent un vecteur de développement dans l’augmentation de leur température et des fréquences de fonctionnement mais aussi dans la réduction des temps de commutation des interrupteurs, leur permettant de réduire leurs pertes thermiques et ainsi, de réduire leurs besoins en refroidissement. Les moteurs et générateurs électriques évoluent avec des topologies aussi diverses qu’innovantes pour répondre aux besoins d’intégration, robustesse et sureté de fonctionnement. Particulièrement, les bobinages des moteurs sont les premiers éléments sur le front de bataille. Au sein du bobinage s’effectuent les échanges entre moteur et convertisseur. L’augmentation des contraintes fréquentielles et transitoires sous forme de fronts de courant et tension issus des ensembles d’électronique de puissance constituent des défis en termes de compatibilité électromagnétique (CEM) pour les systèmes embarqués. Le travail présenté ici est le fruit d’une étroite collaboration entre la société NOVATEM et le laboratoire Génie de Production de l’ENIT de Tarbes au travers d’un financement CIFRE, en association avec la plateforme Labceem de l’IUT de Tarbes. Il propose d’apporter des modèles prédictifs permettant de déterminer les conséquences de ces contraintes d’intégration dans les systèmes mécatroniques de puissance dès les premières étapes de leur conception. Les perturbations conduites dont la source HF est au sein des interrupteurs de puissance du convertisseur, sont façonnées par les impédances caractérisant le chemin de couplage dont le moteur fait partie intégrante. Ce travail vise à élaborer des méthodes et outils pour contribuer à l’étude prédictive de la compatibilité électromagnétique (CEM) des ensembles mécatroniques en essayant de couvrir une plage de fréquence allant de 0 à 300 MHz. Dans une première partie, un état de l’art est détaillé afin de délimiter le contexte et les frontières de l’étude. Puis, un deuxième chapitre porte sur la modélisation analytique de bobinages concentrés de moteurs électriques. Les modèles analytiques établis permettent de déterminer les paramètres de réseaux de circuits pour effectuer des simulations dans le domaine temporel et harmonique. Contrairement aux modèles comportementaux de moteurs répandus dans la littérature, les modèles ici synthétisés prennent en compte les paramètres physiques des bobinages. Ils donnent la possibilité à l’utilisateur de paramétrer les architectures de bobinages concentrés en changeant des paramètres tels que la géométrie des bobines, les matériaux d’isolation ou encore la perméabilité des culasses. Un troisième chapitre, détaille l’établissement d’une méthode rationnelle d’extraction numérique de paramètres fonctionnels et parasites des PCB multicouches de puissance. Cette méthode, de par la prise en compte de paramètres physiques, s’inscrit dans une logique générique et prédictive. Finalement, dans le dernier chapitre, les outils et méthodes précédemment établis sont appliqués à l’étude d’un système réel de motorisation de véhicule électrique développé par la société partenaire Novatem. Le caractère physique et prédictif de ces outils vise à permettre l’expérimentation virtuelle sur l’ensemble moteur-convertisseur sans la nécessité de prototypes. Ce dernier chapitre illustre l’intérêt d’une approche physique en modélisation pour la compatibilité électromagnétique de systèmes mécatroniques. / From the more electrically operated aircraft, to the hybridization of motor vehicles, all the way to electromechanic cardiac implants, compactness has become the holy grail of modern embedded electrical engineering. Indeed, the power-to-weight ratio demands for electromechanical systems has greatly increased. To meet these high integration needs, power electronic converters find a vector of development by increasing their temperature and operating frequencies but also by reducing the switching time of power switches, thus enabling them to reduce their power losses and thereby reducing their cooling requirements. Electric motors and generators operate with various innovative topologies that meet integration, robustness and reliability needs. Motor windings, particularly, are the first motor components on the battle front. It is at the heart of the winding that occur the exchanges between motor and converter. In terms of electromagnetic compatibility (EMC) for embedded systems, the increased frequency and transient stresses in the form of current and voltage edges from the power electronic assemblies are considered steep challenges. The work presented herein is the result of a close cooperation between the company Novatem and the laboratory Génie de Production of ENIT de Tarbes, through CIFRE funding, in combination with the Labceem platform of IUT of Tarbes. Its aim is to develop predictive models that will serve to determine the consequences of such integration constraints in power mechatronic systems that are in the early stages of design. Conducted disturbances whose HF source is located at the inverter power switches are shaped by the impedances characterizing the coupling path of which the electrical machine is an integral part. This work proposes to develop methods and tools to support the predictive study of electromagnetic compatibility (EMC) of mechatronic assemblies, by attempting to cover a modeling frequency range that goes from 0 to 300 MHz’s. In the first chapter of this work, a literature review is detailed for the definition of the context and boundaries of the study. A second chapter focuses on the analytical modeling of concentrated windings in electric motors. The analytical models that are established allow determination of circuit networks settings to perform time- and frequency- domain simulations. Unlike the widespread behavioral models of electrical machine in the literature, the models that are synthesized here take into account the physical parameters of the coils. The user of such models is offered the opportunity to account for the different winding architectures, by changing core parameters such as geometry, insulation materials or permeability. A third chapter describes the establishment of a rational method for extraction of functional and parasitic parameters in multilayer Power PCBs. This method being of a generic and predictive logic aims to account for physical parameters. Finally, in the last chapter, the previously established tools and methods are applied to the study of a real electric vehicle drive system developed by the company Novatem. The physical and predictive value of these tools allows for execution of virtual experimentations on the motorconverter assembly without the need for prototypes. This chapter illustrates the value of a physical approach to modeling the electromagnetic compatibility of mechatronic systems.
3

Optimisation de convertisseurs DC-DC SoC (System on Chip) pour l'automobile / Optimization of SoC (System on Chip) DC-DC converters for automotive application

Aulagnier, Guillaume 16 April 2015 (has links)
L’équipe de conception de Freescale à Toulouse développe des circuits intégrés dédiés au marché de l’automobile pour des applications châssis, sécurité ou loisir. Les contraintes associées à l’embarquement des circuits sont nombreuses : niveau d’intégration, fiabilité, températures élevées, et compatibilité électromagnétique. Les produits conçus par Freescale intègrent des convertisseurs à découpage pour l’alimentation en énergie des microcontrôleurs. Cette thèse a pour objet l’étude de nouvelles topologies de convertisseur d’énergie pour la baisse de l’encombrement et des perturbations électromagnétiques. La structure multiphase répond à la problématique dans son ensemble. Un prototype est réalisé dans une technologie silicium Freescale haute tension 0.25µm. Le volume des composants externes de filtrage est optimisé et réduit. Les mesures sur le prototype montrent des performances en accord avec les objectifs, et des émissions électromagnétiques particulièrement faibles. / The Freescale design team in Toulouse develops integrated circuits for automotive application such as chassis, safety or infotainment. Constraints associated with the embodiment of such circuits are many: die-size, safety, EMC (Electromagnetic Compliance). Switching Mode Power Supplies are integrated in these products to supply power to microcontrollers. This PhD thesis is to study new topologies of power supply to reduce the volume and electromagnetic disturbances. The multiphase structure responds to the raised issue. A prototype is produced in a Freescale 0.25µm high voltage silicon technology. Volume of the external components for filtering is optimized and reduced. Measures show upgrades in performance and reduced electromagnetic emissions.
4

Analysis and optimization of the conducted emissions of an on- board charger for electric vehicles / Analyse et optimisation de la CEM conduite d’un chargeur de batteries embarqué dans un véhicule électrique

Saber, Christelle 19 October 2017 (has links)
La charge d’un véhicule électrique constitue un enjeu stratégique pour les constructeurs automobile et forme un réel défi à relever avant de pouvoir comparer ces véhicules à la simplicité d'usage du véhicule thermique. En effet, l’autonomie limitée, la durée de recharge de la batterie, le coût du déploiement d’une infrastructure de charge rapide, l'impact significatif sur les réseaux électriques et le coût élevé de la batterie sont à l’origine de plusieurs projets de recherche axés sur l’optimisation de la chaîne de recharge du véhicule électrique. Afin d’améliorer l'autonomie d'un véhicule électrique, une solution contraignante mais stratégique consiste à embarquer le chargeur dans le véhicule afin d’assurer la conversion ac-dc de l’énergie à partir des prises de courant. Cette solution permet d’augmenter la disponibilité de la charge pour les utilisateurs. En outre, le chargeur embarqué peut réutiliser tout, ou une partie des éléments déjà existants et nécessaires à la propulsion du véhicule. L'idée étant de pouvoir employer certains éléments de la chaîne de traction électrique, déjà embarqués dans le VE (moteur électrique et onduleur de tension), et d’ajouter un filtre d'entrée et un redresseur afin de concevoir le chargeur. Cette solution permet de réduire le coût du chargeur, sa taille ainsi que le volume nécessaire à l'intégration de ses constituants électriques, on parle alors de chargeur intégré à la chaîne de traction. Cependant, la réutilisation de l’électronique de puissance embarquée engendre des problèmes de compatibilité électromagnétique avec d’autres équipements connectés sur le réseau électrique et aussi avec les dispositifs de protection domestique.Le problème majeur à lever est donc, la limitation des émissions conduites et plus particulièrement des courants de mode commun dans une gamme de fréquence importante. Ce projet de thèse a donc, pour objectif, l’amélioration de la disponibilité de la charge actuelle tout en réduisant le volume du filtre CEM passif. Nous cherchons, à travers ces travaux, à identifier des domaines d'améliorations possibles, à proposer des solutions à bas coûts et à intégrer des modifications au niveau de la commande et de la topologie afin d'optimiser le comportement CEM, tant en basses fréquences (0 - 2 kHz) qu’en hautes fréquences (150 Hz- 30 MHz), de ce chargeur embarqué intégré sans isolation galvanique. Les propositions doivent répondre simultanément aux besoins de recharge domestique en monophasé (à 3.7 kW et à 7.4 kW) et rapide en triphasé (à 22 kW et à 43 kW) sans pour autant augmenter le volume ni les coûts engendrés. Ainsi, cinq axes de travail sont étudiés: l’optimisation du comportement CEM (0-2 kHz) du chargeur en monophasé ; l’optimisation du comportement CEM (0-2 kHz) du chargeur en triphasé ; le développement, la mise en œuvre et l’instrumentation de deux bancs expérimentaux exploités pour l’obtention de résultats; la proposition d’une approche de modélisation CEM de la structure qui tient compte du mode commun et du mode différentiel ; et la proposition de solutions pour la réduction des émissions conduites (150 kHz – 30 MHz). / Battery chargers for electric vehicles are classified as on-board or off-board chargers. Off-board chargers are not constrained by size or weight but introduce additional cost to the infrastructure through the deployment of a high number of charging stations. In order to meet the needs of electric vehicle users in terms of charging availability, on-board chargers that achieve ac/dc conversion are retained. Furthermore, on-board chargers are classified as standalone or integrated systems. By reusing parts of the traction power train for charging, the latter reduces the cost of the charger. Disadvantages of integrated systems include electromagnetic compatibility issues and complex control schemes.This work presents the power quality performance analysis and control optimization of an on-board non-galvanically isolated electric vehicle charger integrated to the traction’s power train. In order to be able to evaluate the high frequency conducted common mode emissions (150 kHz - 30MHz) of a power conversion structure, one needs to develop a good current control scheme that establishes a high-quality low frequency behavior (0 - 2 kHz). Therefore, different aspects related to the power factor correction of the single-phase as well as the three-phase charging configurations are studied: the control scheme for the regulation of the charging power, the displacement power factor correction, the suppression of the grid current harmonics and the active damping of the input filter’s resonance. Two experimental test benches are developed using two different technologies (Silicon IGBTs vs. Silicon Carbide Mosfets). Experimental results are provided.This work also presents a comprehensive approach to modeling the CM and the DM EMI behavior of a power electronics structure. This method is applied to the charger in its single-phase and three-phase configurations. The models allow to evaluate the fluctuating internal nodes and to study the effect of various proposed mitigation solutions on the CM emissions. The models are also developed in the intent of being injected into optimization algorithms for the future design of an optimal EMI filter.

Page generated in 0.1233 seconds