• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery of epigenetic probes against the bromodomain family of proteins

Clark, Peter George Keith January 2015 (has links)
Chemical probes are necessary for elucidating the biochemical roles of proteins. Bromodomains are protein-interaction modules found in a family of proteins implicated in the epigenetic regulation of transcription; however, the individual roles remain unknown for many bromodomain proteins, without potent and selective ligands available to assist in their study. From lead compounds, a structure-based drug discovery program was to be explored with the use of biophysical assays and appropriate chemical methods to expediate development of probes against a number of these proteins. A fragment lead against BRD4 was developed into PNZ5, a potent (K<sub>D</sub> 5 nM) BRD4 probe with a high ligand efficiency. Although enantioselective syntheses and the use of an alternative synthetic route were unsuccessful, PNZ5 showed cytotoxic activity against gastric cancer cell lines that had proved resilient to existing anticancer agents. Optimisation of a lead compound against BRD9 resulted in the development of LP99, the first reported BRD7/9 probe, that was potent (BRD9 K<sub>D</sub> 99 nM, BRD7 K<sub>D</sub> 909 nM), selective amongst bromodomain proteins and active in cells. An enantioselective synthesis was performed using chiral organocatalyts and LP99 was used to identify a previously unknown role of BRD7/9 in the regulation of inflammatory processes. Research is ongoing to assess further biochemical roles of these proteins with LP99. Arising from a more potent lead against BRD9, a series of structurally related compounds were synthesised to explore SAR around this ligand, however no improvement on the affinity of the lead was realised. Finally, based on disclosed lead structures against PCAF, a series of compounds were synthesised to replicate their activity. A number of important binding interactions were assessed and a lead structure was identified (K<sub>D</sub> 1 &mu;M). Development is ongoing to progress this lead into the first reported PCAF probe.
2

Design and synthesis of functionalized carbenes as organocatalysts and reaction intermediates

Nawaz, Faisal 05 June 2013 (has links)
Au cours des dernières années, l'utilisation des carbènes N-hétérocycliques (NHCs) en tant qu'organocatalyseurs a connu un succès impressionnant. Dans ce manuscrit, nous présentons le design et la synthèse de nouveaux organocatalyseurs NHC bifonctionnels, et leurs applications pour la chimie énantiosélective des homoénolates. En parallèle de ces études, une approche conceptuellement nouvelle aux carbènes de pyridine est proposée et exploitée dans une réaction à trois composants originale. Globalement, ce travail contribue au progrès de la connaissance sur l'utilisation des carbènes comme organocatalyseurs et intermédiaires réactionnels. / N-heterocyclic carbenes (NHCs) have become extremely popular organocatalysts in last decade. In this manuscript, we present our work in the design and the synthesis of a new class of bifunctional NHC organocatalysts, and their applications in enantioselective reactions with homoenolate equivalents. Additionally, a conceptually new synthetic approach to pyrid-2-ylidene carbenes is proposed and used in an original three-component reaction. In a broad sense, this work contributes to the progress of knowledge on the use of NHCs as organocatalysts and reaction intermediates.

Page generated in 0.146 seconds