• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Primary Driving Force in Wood Vacuum Drying

Chen, Zhangjing 22 January 1998 (has links)
The objective of this research based on both the theory and experimentation was to prove that the total pressure difference is the primary driving force during the vacuum drying. The theoretical drying rates of diffusion, free water bulk flow and water vapor bulk flow were calculated and compared. The concept of equilibrium moisture content under the vacuum was developed. The theoretical maximum moisture content drop in one cycle was calculated using energy balance. The model was developed for the vacuum drying to understand the mechanism of the vacuum drying including the boiling front and its movement. To evaluate the effect of the sample size on the drying rate, four different thicknesses (1, 1.5, 2, 2.5 inches) and three different lengths (5, 10, 15 inches) were used. In the cyclic drying, the specimens were heated to the 60 C. The vacuum was pulled to about 18 mm Hg. The vacuum pump was kept running for 140 minutes. It was found that in cyclic vacuum drying, drying rate was not affected by the thickness. However, it was affected by the length. The cyclic drying curve consisted of two distinct parts. The fast drying period lasted about 10 to 20 minutes. The slow drying period occurred next when the pressure inside wood got close to the ambient pressure. In end grain vacuum drying, the specimens were coated with wax, wrapped in the plastic film and inserted into a rubber tube to prevent the moisture loss from the side surfaces during drying. The specimen size was 1×1×10 inches. Red oak and white oak were sealed and dried in both cyclic and continuous vacuum drying. The results showed that sealed specimens dried almost as fast as unsealed specimen. There was little moisture loss from the side surfaces. There was a moisture gradient along the length in both cyclic drying and continuous vacuum drying. Red oak specimens of 2.5×1.5×10 inches were used to study the boiling front in the vacuum drying. In order to detect the boiling phenomenon, the saturation pressures were calculated and were compared with the pressures at the same time and the same location. Boiling occurred during drying and the boiling front retreated to the center of wood as drying proceeded. The retreating speed depended on the heat supply and the permeability. Vacuum drying at room temperature was investigated. The specimens were dried at 20 C and pressure near 18 mm Hg. The results showed that wood can be vacuum dried at room temperature with little or no degrade at a reasonable drying rate. All experimental results support the objective of this study that the primary driving force is the total pressure difference. / Ph. D.
2

Fasadpanelens fuktskydd : Har droppnäsan någon betydelse?

Bengtsson Asplin, Björn, Norén, Tommy January 2020 (has links)
Fuktinnehållet i fasadpaneler av trä varierar över tid beroende på faktorer som till exempel frekvensen av slagregn. Fasadpaneler kan ta skada av inträngande fukt och bör därför skyddas på bästa sätt för att inte förlora den primära funktionen att stoppa snö och regn att ta sig innanför byggnadens omslutande klimatskal. Forskningsstudier visar att ett grundläggande fuktskydd kan skapas genom att ytbehandla fasadpanelen och välja rätt träslag. Ett annat känt fuktskyddsråd inom byggbranschen är att snedsåga ändträet på fasadpanelen (även kallad droppnäsa), men inga studier kunde identifieras som styrker att det verkligen gör någon skillnad för fuktinnehållet i materialet. För att undersöka det här närmare togs en bevattningsmodell fram med syftet att ta reda på droppnäsans betydelse för fasadpanelens fuktskydd. Hypotes 1 var att fasadpaneler med droppnäsa generellt absorberar mindre fukt jämfört med fasadpaneler där ändträet inte är snedsågat, oavsett utförande. Det baserades på antagandet att en snävare vinkel på ändträet resulterar i att vattnet från vattenfilmen rinner av fasadpanelen istället för att fastna på ytan av ändträet och sugas upp kapillärt. Hypotes 2 var att ytbehandlade fasadpaneler med droppnäsa tar upp mindre fukt jämfört med ytbehandlade fasadpaneler utan droppnäsa, baserat på att försöka efterlikna rådet gällande snedsågning och ytbehandling, där ytbehandlingen används i syftet att reducera kapilläruppsugningen. Experimentet genomfördes med tre testställningar där alla hade utrustats med likadant stående fasadpanel som var grupperade efter ändträvinkel och ytbehandling. Resultaten från de tre testställningarna kunde sedan jämföras och kontrolleras mot varandra för att undersöka reliabiliteten i studien. För att efterlikna den vattenfilm som kan uppstå vid slagregn och öka den ekologiska validiteten bevattnades fasadpanelerna via en hängränna av trä. Resultatet visade att fuktkvoten för fasadpaneler med droppnäsa fluktuerade över och under fuktkvoten för fasadpanel där ändträet inte var snedsågat, oavsett om utförandet beaktades eller inte. Det snedsågade ändträet visade sig därmed inte vara bättre jämfört med det icke snedsågade ändträet, vilket innebar att ingen av hypoteserna kunde få något stöd. En något lägre fuktkvot kunde däremot observeras på grundbehandlade fasadpaneler, oavsett vinkel på ändträet. Slutsatsen utifrån använd bevattningsmodell var att droppnäsan inte hade någon betydelse för fuktskyddet av fasadpaneler av trä. Istället fanns det indikationer på att det är ytbehandlingen som gör skillnad på fuktinnehållet, vilket stöds av befintlig forskning. / The moisture content of wooden façades changes over time due to external factors, for example the frequency of driving rain. Wooden façades can take damage from penetrating moisture and therefore should be protected so they do not lose their primary function of stopping snow and rain from getting inside the climate shell of the building. Science studies have shown that a fundamental protection from moisture can be created through surface treatment of the façade and choosing the right type of wood. Another known moisture protecting advice within the field of construction is to mitre the corners on the lower part of the façades (also known as dripping channel) but no studies could be found that confirmed that it actually effect the moisture content of the material. To investigate this a little further an irrigation model was created which the purpose to find out the significance of the dripping channel for the moisture protection of the façades. Hypothesis 1 was that façades with dripping channels generally absorb less moisture then façades with an end grain without a mitred corner, regardless of treatment. This was based on the assumption that a more narrow angle on the end grain causes the water from the water film to drip of the façades instead of getting trapped on the surface, and be absorbed by capillary forces. Hypothesis 2 was that treated façades with dripping channels absorb less moisture then treated façades without dripping channels, based on the attempt to mimic the advice regarding mitre and surface treatment, where the surface treatment is used for the purpose of reducing capillary uptake. The experiment consisted of three testing riggs with vertical wooden façades which were sorted by the angle of the end grain and surface treatment. The results from the three testing riggs could then be compared to each other to evaluate the reliability of the study. To mimic the water film that can appear during driving rain, the façades were irrigated through a wooden gutter. The results showed that the moisture ratio for façades with dripping channels was fluctuating under and above the moisture ratio for façades where the corner of the end grain was not mitred, regardless of treatment. The same results could be seen even when the treatment was considered. Façades with mitred end grains could therefore not be seen as better then façades without mitred end grains, so none of the hypotheses could get any support. However, a slightly smaller moisture ratio could be observed on surface treated façades, regardless the angle of the end grain. The conclusion based on the used irrigation model was that the dripping channel is of no significance for the moisture protection of the wooden façades. Instead there were indications that it is the surface treatment which makes a difference on the moisture content, something that is supported by existing research.

Page generated in 0.0786 seconds