• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação dos fatores indutores da transição epitélio-mesenquimal (EMT) na biologia das células endoteliais / Evaluation of inducing factors of epithelial-mesenchymal transition (EMT) in the endothelial cells biology

Pinto, Mariana Tomazini 18 September 2015 (has links)
A transição endotélio-mesenquimal (EndMT) é uma forma especializada da transição epitéliomesenquimal (EMT) e é caracterizada pela alteração da morfologia celular para um formato fibroblastoide, perda da expressão dos marcadores endoteliais e ganho da expressão dos marcadores mesenquimais, bem como a aquisição de propriedades invasivas e migratórias. Entretanto, o mecanismo molecular envolvido nesse processo ainda não está totalmente elucidado. O objetivo desse trabalho foi avaliar os fatores indutores da EMT em células endoteliais (CEs) de fontes distintas por meio da superexpressão do fator de transcrição SNAIL e do tratamento com TGF-?2, bem como identificar os mecanismos moleculares envolvidos nesse processo. Para tal, as linhagens de CE da artéria pulmonar (HPAEC), pool de CE primária de veia de cordão umbilical (PHUVEC), CE da aorta (PAEC) e CE da artéria coronária (CAEC) foram induzidas em três condições distintas: I) TGF-?2; II) superexpressão do fator de transcrição SNAIL; III) superexpressão do fator de transcrição SNAIL associado ao tratamento com TGF-?2 (SNAIL+TGF-?2). Após a indução, a expressão dos genes relacionados com a EndMT foi analisada por PCR em tempo real (qPCR) e as CAECs foram as células que apresentaram maior mudança no perfil de expressão gênica, no qual o grupo SNAIL+TGF-?2 apresentou um aumento dos marcadores mesenquimal FN1, SM22, CNN1 e CD90. O grupo SNAIL+TGF-?2 também mostrou uma diminuição dos marcadores endoteliais CD31 e CDH5 por Western blot. Em seguida, a técnica de microarray foi realizada nas CAECs induzidas à EndMT e as análises revelaram um dendrograma cujo perfil mostrou que SNAIL e SNAIL+TGF-?2 se agrupam separadamente das outras condições. Os dados de microarray resultaram em uma rede na qual os genes mesenquimais COL1A1, COL1A2, FN1 e CNN1 estavam aumentados no grupo SNAIL+TGF-?2 comparado com o grupo controle. Os genes diferencialmente expressos entre a análise CT vs. SNAIL+TGF-?2 foram analisados quanto a participação em vias canônicas e a via de regulação da EMT foi uma das mais representadas, a qual inclui a via de sinalização Notch e Wnt. Nos dados de microarray, NOTCH3 e WNT5B estavam superexpressos no grupo SNAIL+TGF-?2 comparado com o controle. Sabendo que Wnt5b pode inibir a via ?-catenina, a expressão de NOTCH3, WNT5B e ?-CATENINA foi avaliada por qPCR e a expressão de NOTCH3 e WNT5B confirmou os dados do microarray e nenhuma diferença estatística foi observada na expressão de ?- CATENINA. Ainda, as CAECs induzidas foram submetidas ao ensaio de migração e de capacidade de formação de estruturas semelhantes a capilares. Foi observado que as CAECSNAIL+ TGF-?2 migraram significativamente comparadas com as outras condições e nenhuma das células induzidas (TGF-?2, SNAIL e SNAIL+TGF-?2) foram capazes de formar estruturas semelhantes a capilares. Alguns microRNAs foram selecionados e avaliados por qPCR. O miR-let7a foi significativamente expresso no grupo SNAIL e SNAIL+TGF-?2. O ensaio de perda e ganho de função do miR-let7a foi realizado, entretanto, a repressão ou a indução do miR-let7a não alterou a EndMT. Esses resultados sugerem que as CEs de fontes anatômicas distintas apresentam respostas diferentes quando estimuladas a sofrerem EndMT. Ademais, a associação entre SNAIL+TGF-?2 é um potente indutor para EndMT e essa indução pode ser mediada pelas vias de sinalização Notch e Wnt não canônica. / Endothelial-mesenchymal transition (EndMT) is a specialized form of epithelialmesenchymal transition (EMT) which is characterized by changes in cell morphology as a fibroblastoid conversion, expression of endothelial markers decreased, expression of mesenchymal markers increased and acquirement of invasive and migratory properties. However, the molecular mechanism associated with this process is not completely elucidated. The aim of this study was to evaluate the EMT-inducing factors in the endothelial cells (ECs) from different sources through the overexpression of the transcription factor SNAIL and through the treatment with TGF-?2, as well as to identify the molecular mechanisms involved in EndMT. For this purpose, primary pulmonary artery EC (HPAEC), primary pooled umbilical vein EC (PHUVEC), primary aortic EC (PAEC), primary coronary artery EC (CAEC) lineages were induced under three distinct conditions: I) TGF-?2; II) ectopic expression of SNAIL; III) ectopic expression of SNAIL associated with TGF-?2 (SNAIL+TGF- ?2). After the EndMT induction, the expression of the genes associated with EndMT was analyzed by Real time PCR (qPCR) and CAECs showed the most prominent alterations on their gene expression profile which showed that SNAIL+TGF-?2 group presented an increase of mesenchymal markers FN1, SM22, CNN1, and CD90 expression. CAEC-SNAIL+TGF-?2 group also showed a decrease of endothelial markers CD31 and CDH5 by western blot. Then, microarray was performed in CAECs after EndMT induction and hierarchical clustering analysis showed that the ectopic expression of SNAIL and SNAIL+TGF-?2 clustered separately from the other conditions. Microarray data resulted in a network which presented an upregulation of the mesenchymal genes such as COL1A1, COL1A2, FN1, and CNN1 in the CAEC-SNAIL+TGF-?2 compared to control cells. We analyzed the canonical pathways related to the differentially regulated genes between CAEC- SNAIL+TGF-?2 and control cells and the regulation of EMT pathways was the most represented, which includes Notch and Wnt signaling pathway. In the microarray data, NOTCH3 and WNT5B were overexpressed in CAEC-SNAIL+TGF-?2 compared to control. It is known that Wnt5b might inhibit the ?- catenin pathway. Therefore, NOTCH3, WNT5B and ?-CATENIN gene expression were analyzed by qPCR. NOTCH3 and WNT5B gene expression confirmed the microarray data and no statistical difference were observed in ?-CATENIN expression. Moreover, all the CAECs conditions were subjected to scratch migration assay and the formation of capillary-like structures assay. CAEC-SNAIL+TGF-?2 had a significant migration compared to other conditions and the three EndMT inductions (TGF-?2, SNAIL, and SNAIL+TGF-?2) were not able to form capillary-like structures. Some microRNAs were selected and evaluated by qPCR. The miR-let7a was significantly expressed in the SNAIL and SNAIL+TGF-?2 groups. The assay of gain or loss of function of miR-let7a was realized; however, the repression or induction of miR-let7a did not change the EndMT. These results suggest that endothelial cells from distinct anatomical sources have different responses when stimulated to undergo the EndMT. Moreover, the association between SNAIL+TGF-?2 is a potent inductor for EndMT and this induction can be mediated by Notch and non-canonical Wnt signaling pathway activation.
2

Avaliação dos fatores indutores da transição epitélio-mesenquimal (EMT) na biologia das células endoteliais / Evaluation of inducing factors of epithelial-mesenchymal transition (EMT) in the endothelial cells biology

Mariana Tomazini Pinto 18 September 2015 (has links)
A transição endotélio-mesenquimal (EndMT) é uma forma especializada da transição epitéliomesenquimal (EMT) e é caracterizada pela alteração da morfologia celular para um formato fibroblastoide, perda da expressão dos marcadores endoteliais e ganho da expressão dos marcadores mesenquimais, bem como a aquisição de propriedades invasivas e migratórias. Entretanto, o mecanismo molecular envolvido nesse processo ainda não está totalmente elucidado. O objetivo desse trabalho foi avaliar os fatores indutores da EMT em células endoteliais (CEs) de fontes distintas por meio da superexpressão do fator de transcrição SNAIL e do tratamento com TGF-?2, bem como identificar os mecanismos moleculares envolvidos nesse processo. Para tal, as linhagens de CE da artéria pulmonar (HPAEC), pool de CE primária de veia de cordão umbilical (PHUVEC), CE da aorta (PAEC) e CE da artéria coronária (CAEC) foram induzidas em três condições distintas: I) TGF-?2; II) superexpressão do fator de transcrição SNAIL; III) superexpressão do fator de transcrição SNAIL associado ao tratamento com TGF-?2 (SNAIL+TGF-?2). Após a indução, a expressão dos genes relacionados com a EndMT foi analisada por PCR em tempo real (qPCR) e as CAECs foram as células que apresentaram maior mudança no perfil de expressão gênica, no qual o grupo SNAIL+TGF-?2 apresentou um aumento dos marcadores mesenquimal FN1, SM22, CNN1 e CD90. O grupo SNAIL+TGF-?2 também mostrou uma diminuição dos marcadores endoteliais CD31 e CDH5 por Western blot. Em seguida, a técnica de microarray foi realizada nas CAECs induzidas à EndMT e as análises revelaram um dendrograma cujo perfil mostrou que SNAIL e SNAIL+TGF-?2 se agrupam separadamente das outras condições. Os dados de microarray resultaram em uma rede na qual os genes mesenquimais COL1A1, COL1A2, FN1 e CNN1 estavam aumentados no grupo SNAIL+TGF-?2 comparado com o grupo controle. Os genes diferencialmente expressos entre a análise CT vs. SNAIL+TGF-?2 foram analisados quanto a participação em vias canônicas e a via de regulação da EMT foi uma das mais representadas, a qual inclui a via de sinalização Notch e Wnt. Nos dados de microarray, NOTCH3 e WNT5B estavam superexpressos no grupo SNAIL+TGF-?2 comparado com o controle. Sabendo que Wnt5b pode inibir a via ?-catenina, a expressão de NOTCH3, WNT5B e ?-CATENINA foi avaliada por qPCR e a expressão de NOTCH3 e WNT5B confirmou os dados do microarray e nenhuma diferença estatística foi observada na expressão de ?- CATENINA. Ainda, as CAECs induzidas foram submetidas ao ensaio de migração e de capacidade de formação de estruturas semelhantes a capilares. Foi observado que as CAECSNAIL+ TGF-?2 migraram significativamente comparadas com as outras condições e nenhuma das células induzidas (TGF-?2, SNAIL e SNAIL+TGF-?2) foram capazes de formar estruturas semelhantes a capilares. Alguns microRNAs foram selecionados e avaliados por qPCR. O miR-let7a foi significativamente expresso no grupo SNAIL e SNAIL+TGF-?2. O ensaio de perda e ganho de função do miR-let7a foi realizado, entretanto, a repressão ou a indução do miR-let7a não alterou a EndMT. Esses resultados sugerem que as CEs de fontes anatômicas distintas apresentam respostas diferentes quando estimuladas a sofrerem EndMT. Ademais, a associação entre SNAIL+TGF-?2 é um potente indutor para EndMT e essa indução pode ser mediada pelas vias de sinalização Notch e Wnt não canônica. / Endothelial-mesenchymal transition (EndMT) is a specialized form of epithelialmesenchymal transition (EMT) which is characterized by changes in cell morphology as a fibroblastoid conversion, expression of endothelial markers decreased, expression of mesenchymal markers increased and acquirement of invasive and migratory properties. However, the molecular mechanism associated with this process is not completely elucidated. The aim of this study was to evaluate the EMT-inducing factors in the endothelial cells (ECs) from different sources through the overexpression of the transcription factor SNAIL and through the treatment with TGF-?2, as well as to identify the molecular mechanisms involved in EndMT. For this purpose, primary pulmonary artery EC (HPAEC), primary pooled umbilical vein EC (PHUVEC), primary aortic EC (PAEC), primary coronary artery EC (CAEC) lineages were induced under three distinct conditions: I) TGF-?2; II) ectopic expression of SNAIL; III) ectopic expression of SNAIL associated with TGF-?2 (SNAIL+TGF- ?2). After the EndMT induction, the expression of the genes associated with EndMT was analyzed by Real time PCR (qPCR) and CAECs showed the most prominent alterations on their gene expression profile which showed that SNAIL+TGF-?2 group presented an increase of mesenchymal markers FN1, SM22, CNN1, and CD90 expression. CAEC-SNAIL+TGF-?2 group also showed a decrease of endothelial markers CD31 and CDH5 by western blot. Then, microarray was performed in CAECs after EndMT induction and hierarchical clustering analysis showed that the ectopic expression of SNAIL and SNAIL+TGF-?2 clustered separately from the other conditions. Microarray data resulted in a network which presented an upregulation of the mesenchymal genes such as COL1A1, COL1A2, FN1, and CNN1 in the CAEC-SNAIL+TGF-?2 compared to control cells. We analyzed the canonical pathways related to the differentially regulated genes between CAEC- SNAIL+TGF-?2 and control cells and the regulation of EMT pathways was the most represented, which includes Notch and Wnt signaling pathway. In the microarray data, NOTCH3 and WNT5B were overexpressed in CAEC-SNAIL+TGF-?2 compared to control. It is known that Wnt5b might inhibit the ?- catenin pathway. Therefore, NOTCH3, WNT5B and ?-CATENIN gene expression were analyzed by qPCR. NOTCH3 and WNT5B gene expression confirmed the microarray data and no statistical difference were observed in ?-CATENIN expression. Moreover, all the CAECs conditions were subjected to scratch migration assay and the formation of capillary-like structures assay. CAEC-SNAIL+TGF-?2 had a significant migration compared to other conditions and the three EndMT inductions (TGF-?2, SNAIL, and SNAIL+TGF-?2) were not able to form capillary-like structures. Some microRNAs were selected and evaluated by qPCR. The miR-let7a was significantly expressed in the SNAIL and SNAIL+TGF-?2 groups. The assay of gain or loss of function of miR-let7a was realized; however, the repression or induction of miR-let7a did not change the EndMT. These results suggest that endothelial cells from distinct anatomical sources have different responses when stimulated to undergo the EndMT. Moreover, the association between SNAIL+TGF-?2 is a potent inductor for EndMT and this induction can be mediated by Notch and non-canonical Wnt signaling pathway activation.
3

The Characterization of Endothelial-Mesenchymal-Transition in Response to TGF-beta and its Potential Role in Angiogenesis

Zours, Sonja Charlotte 13 September 2012 (has links)
Angiogenesis is the formation of new blood vessels by sprouting from pre-existing ones. Transforming growth factor-beta (TGFβ) promotes angiogenesis and is a known inducer of endothelial-mesenchymal transition (EndMT), a process whereby endothelial cells become fibroblastic and motile. We hypothesize that TGFβ-induced EndMT enables endothelial cells to detach from the mature vessel and migrate to form the sprout that becomes a new vessel during angiogenesis. This study characterized EndMT in response to TGFβ +/- vascular endothelial growth factor (VEGF). Bovine aortic endothelial cells (BAEC) were stimulated with TGFβ +/- VEGF for prolonged periods. Confocal imaging and immunoblotting analyses revealed the strongest EndMT response at 5 ng/ml of TGFβ after 144 hours of exposure. A three-dimensional collagen model of angiogenesis revealed a potential relationship between EndMT and blood vessel sprouting. These results suggest that EndMT induction in BAECs requires high concentrations and prolonged exposure to TGFβ and is not significantly influenced by VEGF. / NSERC
4

Induced pluripotent stem cells from patients with hypoplastic left heart syndrome (HLHS) as a model to study functional contribution of endothelial-mesenchymal transition (EndMT) in HLHS

Liu, Xiaopeng 28 November 2016 (has links)
No description available.
5

Identification and Phenotypic Plasticity of Metastatic Cells in a Mouse Model of Melanoma

Li, Xiaoshuang 16 June 2017 (has links)
Melanoma is the deadliest form of skin cancer due to its high propensity to metastasize and resistance to current therapies. We have created a spontaneous mouse model of metastatic melanoma (Dct-Grm1/K5-Edn3) where metastasis to the lungs is 80% penetrant. The primary tumors of these mice present cellular heterogeneity with cells at varying levels of differentiation. The main goal of this study was to determine the metastatic potential of the primary tumor resident Tyrosinase positive cells and evaluate the dynamic phenotypic changes as those cells move from the primary tumors to the sites of metastasis. To accomplish this aim I crossed the Dct-Grm1/K5-Edn3 mice to CreERT2/mT/mG mice to indelibly label Tyrosinase cell populations within the primary tumor with Green Fluorescent Protein (GFP) by topical application of 4-hydroxytamoxifen (4HT) at the tumor site. In vivo lineage tracing and characterization of GFP+ cells were performed in the metastatic lesions. In the 4HT treated Dct-Grm1/ K5-Edn3/Tyr-CreERT2/mT/mG mice, primary tumor derived Tyrosinase positive cells or their progeny (GFP+) established successful metastases in the distant organs indicating the tumorigenic capacity of the differentiated cell populations. Numerous metastatic melanoma cells were identified in the vasculature of the metastatic organs and established close association with the vascular endothelium. The intravascular cells lost pigmentation and did not express melanocytic markers; however, they mimicked endothelial cell properties and gained the expression of CD31 (also known as platelet endothelial cell adhesion molecule PECAM-1) and vascular endothelial (VE)-Cadherin. In the lung metastatic foci, GFP+ cells resumed pigmentation production and lost the expression of endothelial cell markers. Evidence from other metastatic organs in the mice further supported the phenotypic plasticity of metastatic melanoma cells. The in vivo lineage tracing system established in the melanoma mouse model revealed tumor phenotypic plasticity and will be a powerful model to evaluate and help us understand the etiology and pathogenesis of melanoma metastasis. Further characterization of those more aggressive cells in melanoma will allow for the development of new prognostic tests and novel therapeutic strategies to eliminate metastasis.
6

Crosstalk of macrophages and endothelial cells in endothelial-to-mesenchymal transition and cardiac fibrosis

Sánchez Sendín, Elisa 26 June 2017 (has links)
No description available.
7

Contribution of Endothelial-to-Mesenchymal Transition to the Pathogenesis of Human Cerebral and Orbital Cavernous Malformations / ヒト脳・眼窩内海綿状血管腫の病因への内皮間葉移行の関与

Takada, Shigeki 23 May 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21261号 / 医博第4379号 / 新制||医||1029(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 山下 潤, 教授 湊谷 謙司, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
8

Wnt2 Contributes to the Development of Atherosclerosis

Zhang, Jinyu, Rojas, Samuel, Singh, Sanjay, Musich, Phillip R., Gutierrez, Matthew, Yao, Zhiqiang, Thewke, Douglas, Jiang, Yong 01 January 2021 (has links)
Atherosclerosis, is a chronic inflammatory disease, characterized by the narrowing of the arteries resulting from the formation of intimal plaques in the wall of arteries. Yet the molecular mechanisms responsible for maintaining the development and progression of atherosclerotic lesions have not been fully defined. In this study, we show that TGF-β activates the endothelial-to-mesenchymal transition (EndMT) in cultured human aortic endothelial cells (HAECs) and this transition is dependent on the key executor of the Wnt signaling pathway . This study presents the first evidence describing the mechanistic details of the TGF-β-induced EndMT signaling pathway in HAECs by documenting the cellular transition to the mesenchymal phenotype including the expression of mesenchymal markers α-SMA and PDGFRα, and the loss of endothelial markers including VE-cadherin and CD31. Furthermore, a short hairpin RNA (shRNA) screening revealed that Wnt2 signaling is required for TGF-β-mediated EndMT of HAECs. Also, we found that LDLR mice fed on a high-fat western-type diet (21% fat, 0.2% cholesterol) expressed high levels of Wnt2 protein in atherosclerotic lesions, confirming that this signaling pathway is involved in atherosclerosis . These findings suggest that Wnt2 may contribute to atherosclerotic plaque development and this study will render Wnt2 as a potential target for therapeutic intervention aiming at controlling atherosclerosis.
9

‘Knockout-first’ mouse model as a biological tool to study the role of KIAA0182 gene in hypoplastic left heart syndrome

Alnour, Fouzi 16 March 2016 (has links)
No description available.
10

The role of AmotL2 in the regulation of mesenchymal transitioning of endothelial cells

Monteiro, Anita-Ann January 2023 (has links)
Background During development, endothelial cells acquire mesenchymal-like properties to migrate and facilitate normal vascular formation. This process of transformation is known as endothelial to mesenchymal transition (EndMT) and has also been implicated in diseases like vascular pathologies contributing to endothelial inflammation, atherosclerosis and tumour angiogenesis. The Angiomotin family of scaffold proteins play a role in transducing mechanical force at cell junctions. Of this family, Angiomotin-Like 2 (AmotL2) localises to endothelial cell junctions and was recently found to play a role in regulating endothelial cell mechanosensing and inflammation. Methods/Materials Primary human endothelial cell lines (HUVEC) were cultured and manipulated in vitro to investigate the role of AmotL2 in EndMT. Lentiviral short hairpin RNA interference was employed in AmotL2-loss-of-function studies, (produced using HEK - Human Embryonic Kidney - cells) to generate knockdown(kd) cells. Western blotting (WB) was used to assess AmotL2 depletion and changes in protein expression of key EndMT markers. qPCR was performed to look at the same at a transcriptional level. Immunofluorescent staining and confocal imaging were performed to validate WB and qPCR results as well as to study protein localisation. Results AmotL2 was found to regulate Snail1 and N-cadherin at both protein and mRNA levels. Morphological findings displayed the AmotL2kd cells to be elongated, deviating from the regular cobblestone morphology observed in control cells. An increase in scaffold protein levels was observed in the AmotL2 kd samples. Similar results were seen in qPCR data where increased mRNA expression was observed in the AmotL2 kd samples for the same targets. On analysis of IF image data, more nuclear staining was observed in the kd samples. qPCR analysis done on samples treated with TGF-β, exhibited an increase in mRNA expression of targets involved in the EndMT pathway in the treatment samples against the controls. Conclusion The results suggest that AmotL2 plays a role in EndMT by affecting the transcription factors and proteins involved in the pathway, which leads to changing morphology and behaviour of the cells. Looking into more targets involved in EndMT may give us a better understanding of how this process leads to diseases like atherosclerosis and tumour angiogenesis.

Page generated in 0.0249 seconds