• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 21
  • 16
  • 15
  • 10
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 221
  • 221
  • 41
  • 36
  • 35
  • 23
  • 21
  • 20
  • 20
  • 19
  • 19
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studies on the heme oxygenase-1 pathway and anti-angiogenic factors in preeclampsia and endothelial protection

Ramma, Wenda January 2011 (has links)
The endothelium plays a pivotal role in the maintenance of vascular homeostasis and its dysregulation promotes vascular complications. This thesis proposes that heme oxygenase-1 (HO-1), an anti-inflammatory enzyme with antioxidant properties, is endothelial protective factor that prevents endothelial injury induced by cisplatin or activated neutrophils. Specifically, this thesis aimed to test (i) that overexpression of HO-1 prevents cisplatin-induced endothelial injury and suppresses caspase activity; (ii) whether neutrophil-endothelial cell activation resulted in the release of soluble Flt-1 (sFlt-1) and soluble endoglin (sEng), the two anti-angiogenic factors known to induce the clinical signs of preeclampsia; (iii) whether HO-1 prevented activated neutrophils from stimulating the release of these factors from the endothelium; (iv) the relative contribution and the co-dependency of neutrophil activation and anti-angiogenic growth factors in preeclampsia where systemic endothelial dysfunction is known to occur. This thesis shows that cisplatin inhibited human umbilical vein endothelial cells (HUVEC) metabolism as measured by MTT assay and resulted in the release of placenta growth factor (PlGF). Immunoblotting confirmed that cisplatin increased cleaved caspase-3 expression in HUVEC. These effects of cisplatin were attenuated in HUVEC infected with adenovirus encoding HO-1 and the effects were exacerbated when HO-1 was silenced by siRNA. Furthermore, cisplatin stimulated PlGF release was suppressed by the overexpression of HO-1. In addition, HO-1 overexpression inhibited angiogenesis as determined by vascular endothelial growth factor-induced capillary tube formation on Matrigel coated plates. Thus these studies indicate that agents which upregulate HO-1 could increase the effectiveness and tolerability to cisplatin in cancer treatment. Although neutrophils are early contributors to endothelial cell activation, no studies have determined their contribution to the release of sFlt-1 and sEng. We therefore investigated the effect of activated neutrophils on the release of sFlt-1 and sEng in endothelial/neutrophil co-cultures and in the circulation of women with normal pregnancy and preeclampsia. LPS-mediated neutrophil activation stimulated the release of sEng but not sFlt-1 from endothelial cells in culture. In the absence of neutrophils, overexpression of HO-1 in HUVEC downregulated the release of sEng. In contrast, HO-1 overexpression failed to inhibit the release of sEng in the presence of activated neutrophils. The release of sEng by activated neutrophils-endothelial cell cocultures appears to be mediated by metalloproteinases (MMP) as the broad-spectrum MMP inhibitor (GM6001) attenuated sEng release. Clinical studies demonstrated that sEng, pro-inflammatory interleukin-6 (IL-6) and the soluble markers of neutrophil activation (α-defensins and calprotectin) were all elevated in women with preeclampsia. We identified a direct correlation between neutrophil activation and IL-6 release. However, no correlation could be established between these factors and sEng release in preeclampsia. Hence, these results provide compelling clinical evidence to show that the increase in neutrophil activation and IL-6 release during preeclampsia are unlikely to significantly contribute to the clinical signs of preeclampsia as they fail to correlate directly with the anti-angiogenic factors, which form the final common pathway to the clinical signs of preeclampsia and systemic endothelial dysfunction.
22

Nanoscale Feature Composite: An Ensemble Surface for Enhancing Cardiovascular Implant Endothelialization

Tran, Phat L. January 2011 (has links)
The establishment and maintenance of functional endothelial cells (ECs) on an engineered surface is central to tissue engineering. As the field advances, the role of cellular mechanisms, particularly the adhesive interaction between the surface of implantable devices and biological systems, becomes more relevant in both research and clinical practice. Knowledge of these interactions can address many fundamental biological questions and would provide key design parameters for medical implants. It has been shown that EC functionality and adhesivity, crucial for the re-endothelialization process, can be induced by nanotopographical modification. Therefore, the goal of this dissertation research was to develop an ensemble surface composing of nanoscale features for the enhancement of endothelial cell adhesion. Without adhesion, subsequent vital mechanism involved in cell alignment, elongation or spreading, proliferation, migration, and ECM proteins deposition will not occur.Experiments in support of this goal were broken down into three specific aims. The first aim was to characterize and develop a size-dependent self-assembly (SDSA) nanoarray of Octamer transcription factor 4 as a demonstration to the fabrication of nanoscale feature surface. This nanoparticle array platform was a pilot studied for the second aim, which was the development of an ensemble surface of nanoscale features for endothelial cell adhesion. The third aim was to evaluate and assess EC response to the ensemble surface.Hence, we developed an ensemble surface composed of nanoscale features and adhesive elements for EC adhesivity. By using shear stress as a detachment force, we demonstrated greater cell retention by the ensemble surface than uniform controls. Adhesive interactions and cellular migration through integrin expressions, which are critical to tissue development and wound healing process was also observed. Furthermore, cell viability was relatively sustainable, as indicated by the low expression of apoptotic signaling molecules. The findings presented within this dissertation research can be applicable to blood-contact medical implants and possess the potential for future clinical translation.
23

Investigating the role of Junctional Adhesion Molecule-C (JAM-C) in endothelial cell biology in vitro and in vivo using human and mouse models

Beal, Robert William John January 2018 (has links)
Junctional adhesion molecule C (JAM-C) is a component of endothelial cell (EC) tight junctions that has been implicated in a number of endothelial functions, such as angiogenesis and trafficking of leukocytes through the endothelium during inflammation. Work within our lab has identified that loss of JAM-C at EC junctions results in increased reverse transendothelial migration (rTEM) of neutrophils back into the circulation, a response that has been associated with the dissemination of inflammation to distant organs. Whilst the mechanism by which JAM-C is lost or redistributed away from EC junctions has begun to be elucidated, little is known about how loss of endothelial JAM-C impacts the functions of ECs. As such, this thesis aimed to investigate the effect of JAM-C deficiency on EC functions to unravel possible molecular and cellular mechanisms of mediating neutrophil rTEM. To address the effect of JAM-C deficiency on EC functions, an in vitro RNA interference (RNAi) approach was used to efficiently knock-down (KD) JAM-C in human umbilical vein ECs (HUVECs). Importantly, KD of JAM-C did not affect expression of other key EC junctional markers such as JAM-A and VE-Cadherin and cell proliferation and apoptosis were similarly unaffected. Gene expression profiling using microarrays revealed that JAM-C depleted HUVECs exhibited a pro-inflammatory phenotype under basal conditions that was characterised by increased expression of pro-inflammatory genes such as ICAM1 and IL8. Following IL-1β-induced inflammation, no difference in expression of pro-inflammatory genes was detected between control and JAM-C KD HUVECs. However, protein levels of secreted chemokines such as IL-8 were reduced in JAM-C KD HUVECs following stimulation with IL-1β. This was corroborated by in vivo studies demonstrating reduced levels of secreted chemokines in the plasma of mice where JAM-C was conditionally deleted from ECs. A novel finding of this work is the demonstration that JAM-C KD HUVECs exhibit increased autophagy under basal conditions. This might provide a potential mechanism for the reduced chemokine secretion that is observed in this system, whereby chemokines are preferentially trafficked for autophagosome-mediated degradation. Taken together, these findings indicate a multi-functional role for JAM-C in regulating EC homeostasis under basal conditions. JAM-C KD ECs respond aberrantly to inflammatory stimuli by secreting reduced chemokine levels, a consequence that could provide novel insights into the mechanisms of neutrophil rTEM under conditions of endothelial JAM-C loss.
24

Glucagon-like peptide-1 (GLP-1) and liraglutide, a synthetic GLP-1 analog, inhibit inflammation in human aortic endothelial cells via calcium and AMPK dependent mechanisms

Krasner, Nadia Marie 22 January 2016 (has links)
Glucagon-like peptide-1 (GLP-1) synthetic analog therapies are prescribed for type 2 diabetes due to their effects on insulin and glucagon secretion, and glycemic control. Recent studies also suggest that they may have cardiovascular benefits; however, the mechanism responsible for this is unknown. To examine this question, we evaluated the effects of GLP-1 and the GLP-1 synthetic analog, liraglutide on cell signaling and function in human aortic endothelial cells (HAECs). The results indicate that both agents inhibit TNFα and LPS induced cellular adhesion molecule expression and monocyte adhesion. They also show that incubation with 30pM GLP-1 and 100nM liraglutide stimulates an immediate increase in intracellular calcium, which activates calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ). This in turn led to a 2.5 fold increase in the phosphorylation of both AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent protein kinase 1 (CaMK1) within 5 minutes. In addition both GLP-1 and liraglutide caused a 2-fold increase in the phosphorylation of the downstream AMPK/CaMK1 targets: endothelial nitric oxide synthase (eNOS) and cAMP response element-binding protein (CREB). Inhibition of CaMKKβ with STO-609 (0.5ug/mL) blocked the phosphorylation of both AMPK and CaMK1, confirming its pivotal role. Incubation of the HAECs for three hours with lipopolysaccharide (LPS, 2ug/mL) and TNFα (10ng/mL) increased the expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin by 5 and 2 fold, respectively. Comparable increases in THP-1 monocyte adhesion to the HAECs, a putative initiating event in atherogenesis, also occurred. Pre-incubation for one hour with either GLP-1 or liraglutide inhibited these events. Likewise, pre-incubation with the CaMKK inhibitor STO-609, or use of lentivirus shRNA to knock down AMPK, blocked the inhibitory effects of both GLP-1 and liraglutide on monocyte adhesion. These results suggest that the recently observed cardiovascular benefits of GLP-1 and liraglutide could be mediated by their effects on CaMKKβ, AMPK and CaMK1 activation, which lead to decreased adhesion molecule expression and monocyte adhesion in endothelial cells. The finding that these effects occur at concentrations of GLP-1 (30pM) and liraglutide (100nM) observed in vivo also suggests they are physiologically relevant.
25

Role of Cytoskeletal Alignment, Independent of Fluid Shear Stress, in Endothelial Cell Functions

Vartanian, Keri Beth 05 1900 (has links) (PDF)
Ph.D. / Biomedical Engineering / The cardiovascular disease atherosclerosis is directly linked to the functions of the endothelium, the monolayer of endothelial cells (ECs) that line the lumen of all blood vessels. EC functions are affected by fluid shear stress (FSS), the tangential force exerted by flowing blood. In vivo FSS is determined by vascular geometry with relatively straight vessels producing high, unidirectional FSS and vessel branch points and curvatures producing low, oscillatory FSS. While these distinct FSS conditions differentially regulate EC functions, they also dramatically affect EC shape and cytoskeletal structure. High and unidirectional FSS induces EC elongation and cytoskeletal alignment, while concurrently promoting EC functions that are atheroprotective. In contrast, low and oscillatory FSS induces cobblestone-shaped ECs with randomly oriented cytoskeletal features, while simultaneously promoting EC functions that create an athero-prone vascular environment. Whether these distinct EC shapes and cytoskeletal structures influence EC functions, independent of FSS, is largely unknown. The overall hypothesis of this study is that cell shape and cytoskeletal structure regulate EC functions through mechanisms that are independent of FSS. Due to advances in surface engineering in the field of micropatterning, EC shape can be controlled independent of external forces by creating spatially localized surface cues. In this research, lanes of protein were micropatterned on glass surfaces to induce EC elongated shape in the absence of FSS. In Aim 1, micropattern-elongated EC (MPEC) shape and cytoskeletal structure were fully characterized and determined to be comparable to FSS-elongated ECs. Thus, inducing EC elongation on micropatterned lanes provides a platform for studying the functional consequences of EC shape, independent of FSS. Using this model, the following important markers of EC functions related to atherosclerosis were evaluated to determine the influence of EC shape and cytoskeletal alignment: extracellular matrix deposition (Aim 2), inflammatory function(Aim 3), and thrombotic potential (Aim 4). The results indicate that EC-elongated shape and cytoskeletal alignment participate in promoting selected EC functions that are protective against atherosclerosis, independent of FSS. Since EC shape is governed by the cytoskeleton, this data suggests that the cytoskeleton plays an active role in the regulation of EC functions that promote cardiovascular health.
26

Les sérines protéases de la coagulation et leurs récepteurs "proteases-activated receptors": étude analytique de leur signalisation calcium dans une lignée endothéliale et les ostéoblastes

Daubie, Valéry RV 10 January 2008 (has links)
Des résultats d’expériences cliniques de reconstruction de l’os maxillaire faites à partir de la greffe d’une "pâte osseuse" gélifiée par l’ajout de facteur tissulaire ont été le primum movens de ce travail. Cette "pâte osseuse", faite d’os en poudre et de plasma enrichi en plaquette (PRP) à laquelle on ajoute du facteur tissulaire, est un modèle à la fois de la coagulation et de la régénération osseuse. Pour analyser des effets de la coagulation, nous avons utilisé un modèle connu : la culture primaire de cellules endothéliales (HUVEC). Les effets in vitro des facteurs de coagulation, dénommés protéases de la coagulation, pris séparément, ont été bien étudiés dans ces cellules, néanmoins aucune information sur l’effet combiné de ces protéases ou du plasma en coagulation n’était connue. Nous avons mesuré la "signalisation calcium" comme réponse cellulaire aux différents agents et ces mesures de la signalisation calcium ont été complétées par la mesure d’une autre réponse biologique, à savoir la sécrétion de cytokines pro-inflammatoires (IL-6 et IL-8). Pour l’étude de la régénération osseuse, la signalisation calcium a été mesurée sur une lignée d’ostéosarcomes humains (SaOS-2), stimulée par des protéases de la voie extrinsèque de la coagulation (facteur VIIa, facteur Xa et thrombine). Comme réponse biologique complémentaire, nous avons évalué l’effet des protéases d’intérêt sur l’apoptose induite par l’absence de sérum dans le milieu de culture. Les premiers travaux, réalisés sur les HUVEC, nous ont permis de montrer que le facteur Xa et la thrombine induisaient des signaux calcium différents sur ces cellules en mono couches, alors que le complexe facteur tissulaire – facteur VIIa ne provoquait aucune signalisation calcium. Nous avons également pu montrer une addition des signaux calcium induits par le facteur Xa et la thrombine. L’activation in situ du facteur Xa et de la thrombine à partir de leur zymogène a permis à la fois de confirmer les résultats précédents et de se rapprocher de l’in vivo. Finalement, au plus proche de l’in vivo, les expériences faites avec du plasma en coagulation ont également permis de détecter un signal calcium. La réponse biologique (sécrétion d’IL-6 et d’IL-8) en aval du signal calcium a confirmé les résultats calcium. En ce qui concerne la régénération osseuse étudiée à partir de SaOS-2, nous avons démontré l’expression du facteur tissulaire sur la lignée SaOS-2 et nous avons montré que le facteur VIIa, le facteur Xa et la thrombine induisaient tous des signaux calcium. Ces signaux présentaient des caractéristiques propres suivant la ou les protéase(s) utilisée(s) pour la stimulation. Les mesures ont également permis de caractériser, sur ces cellules, les récepteurs activés par les protéases d’intérêt, à savoir les "protease-activated receptors" 1 et 2 (PAR-1 et PAR-2). Comme réponse biologique, nous avons mesuré la diminution de l’apoptose induite par les protéases en absence de sérum dans le milieu de culture. Il a ainsi été montré que seule l’activation du récepteur PAR-1 permettait de diminuer l’apoptose. Finalement, nous avons caractérisé la voie suivie, qui passait par la phosphoinositide 3-kinase et la voie des MAPK Raf/MEK/ERK 1/2. En conclusion, cette thèse a permis de montrer, d’une part, que le facteur Xa et la thrombine provoquent des réponses calciques et proinflammatoires additifs dans les cellules endothéliales et, d’autre part, que le complexe facteur tissulaire – facteur VIIa, le facteur Xa et la thrombine induisent des signaux calcium caractéristiques dans les ostéosarcomes par l’activation des récepteurs PAR, l’activation de PAR-1 diminuant l’apoptose induite par l’absence de sérum dans le milieu de culture.
27

Measurement of Nitric Oxide Production from Lymphatic Entothelial Cells Under Mechanical Stimuli

Jafarnejad, Mohammad 1987- 14 March 2013 (has links)
The lymphatic system plays an important role in fluid and protein balance within the interstitial spaces. Its dysfunction could result in a number of debilitating diseases, namely lymphedema. Lymphatic vessels utilize both intrinsic and extrinsic mechanisms to pump lymph. Intrinsic pumping involves the active contraction of vessels, a phenomenon that is regulated in part by nitric oxide (NO) produced by lymphatic endothelial cells (LECs). NO production by arterial endothelial cells has been shown to be sensitive to both shear stress and stretch. Therefore, because of the unique mechanical environment of the LECs, we hypothesize that mechanical forces play an important role in regulation of the lymphatic pumping. Parallel-plate flow chambers and indenter-based cyclic stretch devices were constructed and used to apply mechanical loads to LECs. In addition, high-throughput micro-scale channels were developed and tested for shear experiments to address the need to increase the productivity and high- resolution imaging. Twenty-four hours treatment of LECs with different shear stress conditions showed a shear-dependent elevation in NO production. Moreover, 2.5 folds increase in cumulative NO was observed for stretched cells compared to the unstretched cells over six hours period. In conclusion, the upregulation observed in NO production under mechanical stimuli suggest new regulatory mechanisms that can be pharmaceutically targeted. These results provide an unprecedented insight into lymphatic pumping mechanism.
28

Effects of Linoleic Acid on Tether Formation between Monocytes and Endothelial Cells

Irick, Joel 12 December 2008 (has links)
<p>The fatty acid linoleic acid has been identified as a potential mediator of atherosclerotic plaque development. Treatment of monocytes with linoleic acid leads to an increase in monocyte adhesion to endothelial cells under flow conditions; however, the mechanisms through which linoleic acid affect monocyte adhesion remain unclear. Using a combination of micropipette aspiration techniques and fluorescent microscopy, I tested the hypothesis that linoleic acid increases membrane tether formation between monocytes and endothelial cells. </p><p>Treatment of U937 monocytes with free linoleic acid or albumin-bound linoleic acid reduced the cortical tension of the monocytes. The effects of albumin-bound linoleic acid on the membrane were governed by the exchange of linoleic acid from albumin to the membrane and by the removal of fatty acids from the membrane by fatty acid binding sites on albumin. </p><p>The frequency of tether formation between U937 monocytes and TNF-α stimulated HUVECs increased following treatment with free linoleic acid or albumin-bound linoleic acid. The increase in tether frequency was not due to an increase in monocyte deformability or adhesion receptor expression. Tether extraction occurred primarily through E-selectin. Treatment with free linoleic acid increased the localization of E-selectin to clathrin-coated pits suggesting an increase in the formation of nanoclusters of E-selectin on HUVECs. The increase in tether frequency was blocked by the U73122 phospholipase C inhibitor indicating that linoleic acid increased monocyte adhesion through a phospholipase C mediated mechanism.</p><p>Treatment with free linoleic acid did not affect the threshold force for tether extraction or the effective viscosity of tethers extracted from HUVECs, but it decreased the threshold force for tether extraction from U937 monocytes and increased the effective tether viscosity. Treatment with U73122 blocked the reduction in the threshold force indicating that linoleic acid affected the regulation of the membrane adhesion energy through the hydrolysis of PIP2 by phospholipase C.</p><p>The results of the study indicated that linoleic acid promoted membrane tether formation by increasing E-selectin bond formation and reducing the adhesion energy between the U937 plasma membrane and the actin cytoskeleton through the hydrolysis of PIP2 by phospholipase C.</p> / Dissertation
29

Pro-oxidant and anti-angiogenic effects of high-dose morphine on the vascular endothelial function and wound healing

Huang, Chien-Chi 25 August 2008 (has links)
High-dose morphine has been extensively used in the control of postoperative and cancer pain. Patients receiving prolonged administration of high-dose morphine are known to be associated with certain cardiovascular complications and tissue regeneration defects. This research thesis aims to investigate the biological effects and molecular mechanisms of high-dose morphine on the vascular endothelial function, angiogenesis and wound regeneration using murine models of morphine-dependence and cultured endothelial cell assays. Mice were subjected to placebo or morphine (20 mg/kg, i.p.) injection for consecutive 14 days. Aortas were harvested for assessment of vasomotor function by isometric force recordings. Protein expression p47phox (a major subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase) was determined by Western blotting. Generation of superoxide anions was detected under confocal microscope. Endothelium-dependent relaxations to acetylcholine were significantly reduced in morphine-treated animals, but were normalized by superoxide scavenging. Fluorescent densities of dihydroethidium and expression of p47phox were increased in the aorta of morphine-treated mice. In the second part of this thesis, the candidate determined the effects of high-dose morphine on angiogenesis and mobilization of endothelial progenitor cells (EPCs) in a mouse model of excisional wound injury. Excisional wound was created on control and morphine-dependent mice. Wound healing was compared by measuring the final-to-initial wound area ratio. Generation of superoxide anions in the wound was determined by luminol-enhanced chemiluminescence. Circulating mononuclear cells were isolated and measured for EPC (defined as CD34+/CD133+ cell) counts. In vivo and in vitro measurements of angiogenesis following morphine treatment were performed using the Matrigel assay. The results showed that wound closure was significantly reduced in mice treated with morphine when compared with controls, and higher levels of superoxide anions were generated in these wounds. High-dose morphine reduced numbers of circulating EPCs following creation of excisional wound. Matrigel assay showed impaired angiogenesis in animals and reduced capillary tube formation in cultured endothelial cells treated with high-concentration of morphine. Collectively, this research thesis demonstrated a number of novel findings. First, high-dose of morphine impairs vascular endothelial function by increased production of vascular superoxide anions. Activation of NADPH oxidase may be the molecular mechanisms responsible for reduced bioavailability of endothelium-derived NO. Second, systemic administration of high-dose morphine delays healing of excisional wounds and impairs angiogenesis. This antiangiogenic effect is associated with increased superoxide anions production and impaired mobilization of EPCs. In line with direct endothelial dysfunction, impaired angiogenesis and EPC mobilization resulted from high-dose morphine treatment may cause increased cardiovascular morbidity in human subjects receiving higher therapeutic dose of morphine.
30

Role of Caspase 13 Activation in Carotid artery Balloon Injury

Lin, Chun-yao 07 September 2009 (has links)
ABSTRACT Endothelial dysfunction/apoptosis is critical to the development of neointima hyperplasia. Our pilot study identified a novel member of the caspase subfamily, caspase 13 (CASP 13), which is induced by oxidized low density lipoprotein (ox-LDL) in endothelial cells, but not in vascular smooth muscle cells. It remains controversial whether CASP 13 is a human or bovine gene. In this study, we collected four human brachial artery segments during arterioveinous fistula graft removal surgeries. By western blot and quantitative RT-PCR analysis, CASP13 expression was elevated at the anastomosis of brachial arteries from patients receiving hemodialysis. Rat carotid artery balloon model is widely used as in vivo atherosclerosis model for studies on neointima formation and especially vascular smooth muscle proliferation. However, most of the balloon injury studies terminated on the 14th day to sacrifice the animals for histological studies. In this study, we employed the ultrasonic device to record the hemodynamic changes in rat carotid artery at different time intervals after balloon injury. The pre-operative mean left carotid artery internal diameter and blood flow of Sprauge Dawley rats was 0.6 ¡Ó 0.07 mm and 28.75 ¡Ó 4.45 cm/sec, respectively. After balloon dilatation, the mean internal diameter of left carotid artery elevated to 0.77 ¡Ó 0.09 mm and 0.71 ¡Ó 0.08 mm on day 7 and day 14, respectively. Besides, the mean blood flow velocity also increased to 47.6 ¡Ó 9.2 cm/sec and 33.4 ¡Ó 10.8 cm/sec on day 7 and day 14, respectively. However, the left carotid artery blood flow velocity returned to 24 ¡Ó 3.5 cm/sec on day 21. The CASP 13 protein expression was found elevated in the balloon injury sites and mainly localized in the endothelial cells. In summary, CASP 13 is detected in endothelial cells in both human and rat atherosclerosis models and may constitute a novel molecular target for vascular diseases.

Page generated in 0.383 seconds