• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 68
  • 28
  • Tagged with
  • 166
  • 156
  • 121
  • 108
  • 102
  • 102
  • 102
  • 52
  • 38
  • 26
  • 24
  • 18
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A Unified Infrastructure for Monitoring and Tuning the Energy Efficiency of HPC Applications

Schöne, Robert 19 September 2017 (has links)
High Performance Computing (HPC) has become an indispensable tool for the scientific community to perform simulations on models whose complexity would exceed the limits of a standard computer. An unfortunate trend concerning HPC systems is that their power consumption under high-demanding workloads increases. To counter this trend, hardware vendors have implemented power saving mechanisms in recent years, which has increased the variability in power demands of single nodes. These capabilities provide an opportunity to increase the energy efficiency of HPC applications. To utilize these hardware power saving mechanisms efficiently, their overhead must be analyzed. Furthermore, applications have to be examined for performance and energy efficiency issues, which can give hints for optimizations. This requires an infrastructure that is able to capture both, performance and power consumption information concurrently. The mechanisms that such an infrastructure would inherently support could further be used to implement a tool that is able to do both, measuring and tuning of energy efficiency. This thesis targets all steps in this process by making the following contributions: First, I provide a broad overview on different related fields. I list common performance measurement tools, power measurement infrastructures, hardware power saving capabilities, and tuning tools. Second, I lay out a model that can be used to define and describe energy efficiency tuning on program region scale. This model includes hardware and software dependent parameters. Hardware parameters include the runtime overhead and delay for switching power saving mechanisms as well as a contemplation of their scopes and the possible influence on application performance. Thus, in a third step, I present methods to evaluate common power saving mechanisms and list findings for different x86 processors. Software parameters include their performance and power consumption characteristics as well as the influence of power-saving mechanisms on these. To capture software parameters, an infrastructure for measuring performance and power consumption is necessary. With minor additions, the same infrastructure can later be used to tune software and hardware parameters. Thus, I lay out the structure for such an infrastructure and describe common components that are required for measuring and tuning. Based on that, I implement adequate interfaces that extend the functionality of contemporary performance measurement tools. Furthermore, I use these interfaces to conflate performance and power measurements and further process the gathered information for tuning. I conclude this work by demonstrating that the infrastructure can be used to manipulate power-saving mechanisms of contemporary x86 processors and increase the energy efficiency of HPC applications.
82

Analysis on automatic generation of BEPS model from BIM model

Karlapudi, Janakiram 27 January 2021 (has links)
The interlinking of enriched BIM data to Building Energy Performance Simulation (BEPS) models facilitates the data flow throughout the building life cycle. This seamless data transfer from BIM to BEPS models increases design efficiency. To investigate the interoperability between these models, this paper analyses different data transfer methodologies along with input data requirements for the simulation process. Based on the analysed knowledge, a methodology is adopted and demonstrated to identify the quality of the data transfer process. Furthermore, discussions are provided on identified efficiency gaps and future work.:Abstract Introduction and background Methodology Methodology demonstration Creation and export of BIM data Verification of OpenBIM meta-data BEPS model generation and validation Import statics Model Geometry and Orientation Construction details Thermal Profile Results and discussion Summary and future work References
83

Annual Report 2014 - Institute of Resource Ecology

Stumpf, Thorsten, Foerstendorf, Harald, Bok, Frank, Richter, Anke January 2015 (has links)
The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden – Rossendorf (HZDR). The research activities are mainly integrated into the program “Nuclear Waste Management, Safety and Radiation Research (NUSAFE)” of the Helmholtz Association (HGF) and focused on the topics “Safety of Nuclear Waste Disposal” and “Safety Research for Nuclear Reactors”. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program “Energy Efficiency, Materials and Resources (EMR)”. Both programs, and therefore all work which is done at IRE, belong to the research sector “Energy” of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks exerted by radioactive and nonradioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants, and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes, and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.
84

On Enforcing Reliability in Unidirectional WSNs: A MAC-Based Approach

Parsch, Philip 18 June 2019 (has links)
With the advent of Internet of Things (IoT), an increasing number of devices start exchanging information. This puts emphasis on wireless sensor networks (WSNs) to facilitate the interaction with the environment in varied application scenarios such as, for example, building and home automation among others. In this context, a reliable communication is usually required, i.e., it is necessary to guarantee that packets arrive within a specified maximum delay or deadline. In addition, since nodes are usually battery-powered and deployed in large numbers, they must be cost-effective and economize on energy, which requires nodes to have a low complexity. In this context, unidirectional communication, i.e., where nodes either send or receive data, seems to be an interesting solution. Since no elaborate feedback mechanisms such as carrier sensing, acknowledgments and retransmissions schemes are possible, complexity, costs, energy consumption and communication overhead are reduced in a considerable manner. On the other hand, however, packet loss becomes more likely making such networks strongly unreliable. To overcome this predicament, two MAC (Medium Access Control) protocols are proposed, namely DEEP and RARE. These consist in nodes transmitting their data as sequences of redundant packets with carefully selected inter-packet separations leading to robust transmission patterns that enable reliable communication. In the case of DEEP, full (100%) reliability can be guaranteed, i.e., there is no data loss, which is particularly useful for safety critical applications. RARE, on the other hand, is designed for applications that tolerate some amount of data loss and can be configured to a reliability <100%, i.e., to a certain probability on successful data delivery. This allows improving other aspects of the network, such as energy consumption, communication delays, etc. In contrast to solutions from the literature, the proposed protocols do not pursue a best-effort approach, but rather provide an analytical framework to assess the performance (i.e., reliability, energy consumption, etc.) of the network. In addition, the proposed protocols are based on more general models that allow describing arbitrary node types with different deadlines and packet lengths leading to a provable higher performance. These and other benefits are illustrated by the means of extensive numerical experiments and simulations based on the OMNeT++ framework.
85

Energy efficiency in pneumatics with the 'Air Saving Box': the revolutionary plug & play solution from SMC

Heitmann, Mario, Rein, Ferdinand 26 June 2020 (has links)
For many companies, energy efficiency starts with production. For this reason, special consideration must be given to the production operation as a whole as well as its sub-areas. The strict legal requirements, as well as the companies`green policies which are defined as a result of these, create complex challenges, which SMC meets with expertise and passion as a manufacturer, partner and solution provider in electric and pneumatic automation technology. On the basis of an actual customer requirement, SMC Germany has developed an innovation in the field of pneumatic energy efficiency: The Air Saving Circuit for double acting pneumatic cylinders , under the working title of Air Saving Box . The underlying idea and focus of the solution was to make good use of the compressed air generated in existing cylinders, instead of simply allowing it to go to waste. The Air Saving Box enables significant energy savings in production. Based on this customised solution, SMC has also developed an industry-independent concept that can also be integrated into existing applications.
86

Modular independent metering system for mobile applications providing smooth mode transition

Lübbert, Jan, Weber, Jürgen, Stauch, Christian, Bruck, Peter 26 June 2020 (has links)
Independent metering valve systems open up for more flexibility because of the ability to control meter in and meter out flow individually, thus enabling many possibilities to adapt the actuator s behaviour to the user´s needs without altering any hardware. Furthermore, with alternative flow modes significant energy savings are possible. In many applications like excavators smooth switching between flow modes is required, a demand the market does not provide a satisfying solution for yet. Here, an approach using a short circuit path for smooth switching has been developed. The control algorithm hands over the volume flow from one path to another continuously depending on the current actuator load. Due to the flexible software structure the developed control algorithm can be applied to a very broad variety of independent metering valve layouts. Simulation results are promising and currently the solution is undergoing test rig evaluation.
87

Development of a hydrostatic transmission with integrated supply for working hydraulics

Guo, Jihao, Frerichs, Ludger 26 June 2020 (has links)
The paper presents a study of a highly integrated hydraulic powertrain for mobile working machines. The highlight of this new concept is the replacement of separated drive and working pumps in conventional systems with only one displacement pump. After a comparison of different system architectures, the appropriate operating and control strategies for the chosen topology were applied and optimized. With the help of simulations in AMESim, a proof of the function of the hydraulic circuit and the controlling has been established. In addition, the energy saving potential of the integrated hydraulic system is also considered, by comparing the energy consumption of the new and the conventional powertrain in different duty cycles.
88

Adaptive optical interconnects: The ADDAPT project

Henker, Ronny, Pliva, Jan, Khafaji, Mahdi, Ellinger, Frank, Toifl, Thomas, Offrein, Bert, Cevrero, Alessandro, Oezkaya, Ilter, Seifried, Marc, Ledentsov, Nikolay, Kropp, Joerg-R., Shchukin, Vitaly, Zoldak, Martin, Halmo, Leos, Turkiewicz, Jaroslaw, Meredith, Wyn, Eddie, Iain, Georgiades, Michael, Charalambides, Savvas, Duis, Jeroen, van Leeuwen, Pieter 05 August 2019 (has links)
Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-effcient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables exible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficent transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low-loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.
89

Mehrkriterielle Parameteroptimierung eines Thermoelektrischen Generators

Heghmanns, Alexander, Beitelschmidt, Michael 08 May 2014 (has links)
Aufgrund von steigenden Energiekosten und einer sukzessive steigenden öffentlichen sowie politischen Forderung nach Umweltbewusstsein und Nachhaltigkeit, ist die Effizienzsteigerung von Gesamtsystemen einer der treibenden Kräfte für innovative, technologische Neuheiten geworden. Besonders bei der Entwicklung von verbrennungsmotorisch angetriebenen Fahrzeugen wurden z.B. durch die Hybridisierung von Antriebssträngen, die die Rekuperation von kinetischer Energie ermöglichen, Technologien zur Energieeinsparung etabliert. Da bei Verbrennungsmotoren ein hoher Anteil der im Kraftstoff gespeicherten Energie technologiebedingt als Abwärme im Abgas verloren geht, bietet die Wärmerekuperation ein weiteres hohes Potential für weitere Einsparungen. Diese ist z.B. mit Hilfe von thermoelektrischen Generatoren (TEG) möglich, die einen Wärmestrom direkt in elektrische Energie umwandeln. Zur effizienten TEG-Systemgestaltung ist ein hoher Temperaturgradient über dem thermoelektrisch aktivem Material notwendig, der wiederum zu kritischen thermomechanischen Spannungen im Bauteil führen kann. Diese werden zum einen durch die unterschiedlichen Temperaturausdehnungskoeffizienten der verschiedenen Materialien und zum anderen durch die mechanische Anbindung auf der heißen und kalten Seite des TEG verursacht. Somit liegt ein Zielkonflikt zwischen dem thermoelektrischen Systemwirkungsgrad und der mechanischen Festigkeit des Bauteils vor. In dieser Arbeit wird mit Hilfe einer mehrkriteriellen Parameteroptimierung eines vollparametrisierten FE-Modells des TEG in ANSYS WORKBENCH eine Methode vorgestellt, den thermoelektrischen Wirkungsgrad bei gleichzeitiger Reduktion der thermomechanischen Spannungen zu optimieren. Zur Optimierung kommt dabei ein genetischer Algorithmus der MATLAB GLOBAL OPTIMIZATION TOOLBOX zum Einsatz. Der Modellaufbau wird in ANSYS WORKBENCH mit der Makro-Programmiersprache JSCRIPT realisiert. Als Ziel- und Bewertungsfunktionen wird die mechanische Belastung jedes Bauteils im TEG ausgewertet und dessen elektrische Leistungsdichte berechnet. Die Ergebnisse zeigen, dass mit Hilfe der vorgestellten Methodik eine paretooptimale Lösung gefunden werden kann, die den gestellten Anforderungen entspricht.
90

Ein Framework zur Optimierung der Energieeffizienz von HPC-Anwendungen auf der Basis von Machine-Learning-Methoden

Gocht-Zech, Andreas 03 November 2022 (has links)
Ein üblicher Ansatzpunkt zur Verbesserung der Energieeffizienz im High Performance Computing (HPC) ist, neben Verbesserungen an der Hardware oder einer effizienteren Nachnutzung der Wärme des Systems, die Optimierung der ausgeführten Programme. Dazu können zum Beispiel energieoptimale Einstellungen, wie die Frequenzen des Prozessors, für verschiedene Programmfunktionen bestimmt werden, um diese dann im späteren Verlauf des Programmes anwenden zu können. Mit jeder Änderung des Programmes kann sich dessen optimale Einstellung ändern, weshalb diese zeitaufwendig neu bestimmt werden muss. Das stellt eine wesentliche Hürde für die Anwendung solcher Verfahren dar. Dieser Prozess des Bestimmens der optimalen Frequenzen kann mithilfe von Machine-Learning-Methoden vereinfacht werden, wie in dieser Arbeit gezeigt wird. So lässt sich mithilfe von sogenannten Performance-Events ein neuronales Netz erstellen, mit dem während der Ausführung des Programmes die optimalen Frequenzen automatisch geschätzt werden können. Performance-Events sind prozessorintern und können Einblick in die Abläufe im Prozessor gewähren. Bei dem Einsatz von Performance-Events gilt es einige Fallstricke zu vermeiden. So werden die Performance-Events von Performance-Countern gezählt. Die Anzahl der Counter ist allerdings begrenzt, womit auch die Anzahl der Events, die gleichzeitig gezählt werden können, limitiert ist. Eine für diese Arbeit wesentliche Fragestellung ist also: Welche dieser Events sind relevant und müssen gezählt werden? Bei der Beantwortung dieser Frage sind Merkmalsauswahlverfahren hilfreich, besonders sogenannte Filtermethoden, bei denen die Merkmale vor dem Training ausgewählt werden. Viele bekannte Methoden gehen dabei entweder davon aus, dass die Zusammenhänge zwischen den Merkmalen linear sind, wie z. B. bei Verfahren, die den Pearson-Korrelationskoeffizienten verwenden, oder die Daten müssen in Klassen eingeteilt werden, wie etwa bei Verfahren, die auf der Transinformation beruhen. Beides ist für Performance-Events nicht ideal. Auf der einen Seite können keine linearen Zusammenhänge angenommen werden. Auf der anderen Seite bedeutet das Einteilen in Klassen einen Verlust an Information. Um diese Probleme zu adressieren, werden in dieser Arbeit bestehende Merkmalsauswahlverfahren mit den dazugehörigen Algorithmen analysiert, neue Verfahren entworfen und miteinander verglichen. Es zeigt sich, dass mit neuen Verfahren, die auf sogenannten Copulas basieren, auch nichtlineare Zusammenhänge erkannt werden können, ohne dass die Daten in Klassen eingeteilt werden müssen. So lassen sich schließlich einige Events identifiziert, die zusammen mit neuronalen Netzen genutzt werden können, um die Energieeffizienz von HPC-Anwendung zu steigern. Das in dieser Arbeit erstellte Framework erfüllt dabei neben der Auswahl der Performance-Events weitere Aufgaben: Es stellt sicher, dass diverse Programmteile mit verschiedenen optimalen Einstellungen voneinander unterschieden werden können. Darüber hinaus sorgt das Framework dafür, dass genügend Daten erzeugt werden, um ein neuronales Netz zu trainieren, und dass dieses Netz später einfach genutzt werden kann. Dabei ist das Framework so flexibel, dass auch andere Machine-Learning-Methoden getestet werden können. Die Leistungsfähigkeit des Frameworks wird abschließend in einer Ende-zu-Ende-Evaluierung an einem beispielhaften Programm demonstriert. Die Evaluierung il­lus­t­riert, dass bei nur 7% längerer Laufzeit eine Energieeinsparung von 24% erzielt werden kann und zeigt damit, dass mit Machine-Learning-Methoden wesentliche Energieeinsparungen erreicht werden können.:1 Einleitung und Motiovation 2 Energieeffizienz und Machine-Learning – eine thematische Einführung 2.1 Energieeffizienz von Programmen im Hochleistungsrechnen 2.1.1 Techniken zur Energiemessung oder -abschätzung 2.1.2 Techniken zur Beeinflussung der Energieeffizienz in der Hardware 2.1.3 Grundlagen zur Performanceanalyse 2.1.4 Regionsbasierte Ansätze zur Erhöhung der Energieeffizienz 2.1.5 Andere Ansätze zur Erhöhung der Energieeffizienz 2.2 Methoden zur Merkmalsauswahl 2.2.1 Merkmalsauswahlmethoden basierend auf der Informationstheorie 2.2.2 Merkmalsauswahl für stetige Merkmale 2.2.3 Andere Verfahren zur Merkmalsauswahl 2.3 Machine-Learning mit neuronalen Netzen 2.3.1 Neuronale Netze 2.3.2 Backpropagation 2.3.3 Aktivierungsfunktionen 3 Merkmalsauswahl für mehrdimensionale nichtlineare Abhängigkeiten 3.1 Analyse der Problemstellung, Merkmale und Zielgröße 3.2 Merkmalsauswahl mit mehrdimensionaler Transinformation für stetige Merkmale 3.2.1 Mehrdimensionale Copula-Entropie und mehrdimensionale Transinformation 3.2.2 Schätzung der mehrdimensionalen Transinformation basierend auf Copula-Dichte 3.3 Normierung 3.4 Vergleich von Copula-basierten Maßzahlen mit der klassischen Transinformation und dem Pearson-Korrelationskoeffizienten 3.4.1 Deterministische Abhängigkeit zweier Variablen 3.4.2 UnabhängigkeitVergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5 Vergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5.1 Erzeugung synthetischer Daten 3.5.2 Szenario 1 – fünf relevante Merkmale 3.5.3 Szenario 2 – fünf relevante Merkmale, fünf wiederholte Merkmale 3.5.4 Schlussfolgerungen aus den Simulationen 3.6 Zusammenfassung 4 Entwicklung und Umsetzung des Frameworks 4.1 Erweiterungen der READEX Runtime Library 4.1.1 Grundlegender Aufbau der READEX Runtime Library 4.1.2 Call-Path oder Call-Tree 4.1.3 Calibration-Module 4.2 Testsystem 4.2.1 Architektur 4.2.2 Bestimmung des Offsets zur Energiemessung mit RAPL 4.3 Verwendete Benchmarks zur Erzeugung der Datengrundlage 4.3.1 Datensatz 1: Der Stream-Benchmark 4.3.2 Datensatz 2: Eine Sammlung verschiedener Benchmarks 4.4 Merkmalsauswahl und Modellgenerierung 4.4.1 Datenaufbereitung 4.4.2 Merkmalsauswahl Algorithmus 4.4.3 Performance-Events anderer Arbeiten zum Vergleich 4.4.4 Erzeugen und Validieren eines Modells mithilfe von TensorFlow und Keras 4.5 Zusammenfassung 5 Evaluierung des Ansatzes 5.1 Der Stream-Benchmark 5.1.1 Analyse der gewählten Merkmale 5.1.2 Ergebnisse des Trainings 5.2 Verschiedene Benchmarks 5.2.1 Ausgewählte Merkmale 5.2.2 Ergebnisse des Trainings 5.3 Energieoptimierung einer Anwendung 6 Zusammenfassung und Ausblick Literatur Abbildungsverzeichnis Tabellenverzeichnis Quelltextverzeichnis / There are a variety of different approaches to improve energy efficiency in High Performance Computing (HPC). Besides advances to the hardware or cooling systems, optimising the executed programmes' energy efficiency is another a promising approach. Determining energy-optimal settings of program functions, such as the processor frequency, can be applied during the program's execution to reduce energy consumption. However, when the program is modified, the optimal setting might change. Therefore, the energy-optimal settings need to be determined again, which is a time-consuming process and a significant impediment for applying such methods. Fortunately, finding the optimal frequencies can be simplified using machine learning methods, as shown in this thesis. With the help of so-called performance events, a neural network can be trained, which can automatically estimate the optimal processor frequencies during program execution. Performance events are processor-specific and can provide insight into the procedures of a processor. However, there are some pitfalls to be avoided when using performance events. Performance events are counted by performance counters, but as the number of counters is limited, the number of events that can be counted simultaneously is also limited. This poses the question of which of these events are relevant and need to be counted. % Though the issue has received some attention in several publications, a convincing solution remains to be found. In answering this question, feature selection methods are helpful, especially so-called filter methods, where features are selected before the training. Unfortunately, many feature selection methods either assume a linear correlation between the features, such as methods using the Pearson correlation coefficient or require data split into classes, particularly methods based on mutual information. Neither can be applied to performance events as linear correlation cannot be assumed, and splitting the data into classes would result in a loss of information. In order to address that problem, this thesis analyses existing feature selection methods together with their corresponding algorithms, designs new methods, and compares different feature selection methods. By utilising new methods based on the mathematical concept of copulas, it was possible to detect non-linear correlations without splitting the data into classes. Thus, several performance events could be identified, which can be utilised together with neural networks to increase the energy efficiency of HPC applications. In addition to selecting performance events, the created framework ensures that different programme parts, which might have different optimal settings, can be identified. Moreover, it assures that sufficient data for the training of the neural networks is generated and that the network can easily be applied. Furthermore, the framework is flexible enough to evaluate other machine learning methods. Finally, an end-to-end evaluation with a sample application demonstrated the framework's performance. The evaluation illustrates that, while extending the runtime by only 7%, energy savings of 24% can be achieved, showing that substantial energy savings can be attained using machine learning approaches.:1 Einleitung und Motiovation 2 Energieeffizienz und Machine-Learning – eine thematische Einführung 2.1 Energieeffizienz von Programmen im Hochleistungsrechnen 2.1.1 Techniken zur Energiemessung oder -abschätzung 2.1.2 Techniken zur Beeinflussung der Energieeffizienz in der Hardware 2.1.3 Grundlagen zur Performanceanalyse 2.1.4 Regionsbasierte Ansätze zur Erhöhung der Energieeffizienz 2.1.5 Andere Ansätze zur Erhöhung der Energieeffizienz 2.2 Methoden zur Merkmalsauswahl 2.2.1 Merkmalsauswahlmethoden basierend auf der Informationstheorie 2.2.2 Merkmalsauswahl für stetige Merkmale 2.2.3 Andere Verfahren zur Merkmalsauswahl 2.3 Machine-Learning mit neuronalen Netzen 2.3.1 Neuronale Netze 2.3.2 Backpropagation 2.3.3 Aktivierungsfunktionen 3 Merkmalsauswahl für mehrdimensionale nichtlineare Abhängigkeiten 3.1 Analyse der Problemstellung, Merkmale und Zielgröße 3.2 Merkmalsauswahl mit mehrdimensionaler Transinformation für stetige Merkmale 3.2.1 Mehrdimensionale Copula-Entropie und mehrdimensionale Transinformation 3.2.2 Schätzung der mehrdimensionalen Transinformation basierend auf Copula-Dichte 3.3 Normierung 3.4 Vergleich von Copula-basierten Maßzahlen mit der klassischen Transinformation und dem Pearson-Korrelationskoeffizienten 3.4.1 Deterministische Abhängigkeit zweier Variablen 3.4.2 UnabhängigkeitVergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5 Vergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5.1 Erzeugung synthetischer Daten 3.5.2 Szenario 1 – fünf relevante Merkmale 3.5.3 Szenario 2 – fünf relevante Merkmale, fünf wiederholte Merkmale 3.5.4 Schlussfolgerungen aus den Simulationen 3.6 Zusammenfassung 4 Entwicklung und Umsetzung des Frameworks 4.1 Erweiterungen der READEX Runtime Library 4.1.1 Grundlegender Aufbau der READEX Runtime Library 4.1.2 Call-Path oder Call-Tree 4.1.3 Calibration-Module 4.2 Testsystem 4.2.1 Architektur 4.2.2 Bestimmung des Offsets zur Energiemessung mit RAPL 4.3 Verwendete Benchmarks zur Erzeugung der Datengrundlage 4.3.1 Datensatz 1: Der Stream-Benchmark 4.3.2 Datensatz 2: Eine Sammlung verschiedener Benchmarks 4.4 Merkmalsauswahl und Modellgenerierung 4.4.1 Datenaufbereitung 4.4.2 Merkmalsauswahl Algorithmus 4.4.3 Performance-Events anderer Arbeiten zum Vergleich 4.4.4 Erzeugen und Validieren eines Modells mithilfe von TensorFlow und Keras 4.5 Zusammenfassung 5 Evaluierung des Ansatzes 5.1 Der Stream-Benchmark 5.1.1 Analyse der gewählten Merkmale 5.1.2 Ergebnisse des Trainings 5.2 Verschiedene Benchmarks 5.2.1 Ausgewählte Merkmale 5.2.2 Ergebnisse des Trainings 5.3 Energieoptimierung einer Anwendung 6 Zusammenfassung und Ausblick Literatur Abbildungsverzeichnis Tabellenverzeichnis Quelltextverzeichnis

Page generated in 0.0891 seconds