• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Industrial energy use indices

Hanegan, Andrew Aaron 15 May 2009 (has links)
Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. The data is very scattered with the coefficients of variation (CoV) often exceeding the average EUI for an energy type. The combined CoV from all of the industries considered, which accounts for 8,200 plants from all areas of the continental U.S., is 290%. This paper discusses EUIs and their variations based on electricity and natural gas consumption. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. varies from 1.1 to 1.7 depending on the energy sources considered. The large data scatter indicates that predictions of energy use obtained by multiplying standard EUI data by plant area may be inaccurate and are less accurate in warmer than colder climates (warmer and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers which employ university engineering students, faculty and staff to perform energy assessments for small to medium-sized manufacturing plants. The nation-wide IAC program is sponsored by the U.S. Department of Energy. A collection of six general energy saving recommendations were also written with Texas manufacturing plants in mind. These are meant to provide an easily accessible starting point for facilities that wish to reduce costs and energy consumption, and are based on common recommendations from the Texas A&M University IAC program.
2

Industrial energy use indices

Hanegan, Andrew Aaron 10 October 2008 (has links)
Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. The data is very scattered with the coefficients of variation (CoV) often exceeding the average EUI for an energy type. The combined CoV from all of the industries considered, which accounts for 8,200 plants from all areas of the continental U.S., is 290%. This paper discusses EUIs and their variations based on electricity and natural gas consumption. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. varies from 1.1 to 1.7 depending on the energy sources considered. The large data scatter indicates that predictions of energy use obtained by multiplying standard EUI data by plant area may be inaccurate and are less accurate in warmer than colder climates (warmer and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy's national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers which employ university engineering students, faculty and staff to perform energy assessments for small to medium-sized manufacturing plants. The nation-wide IAC program is sponsored by the U.S. Department of Energy. A collection of six general energy saving recommendations were also written with Texas manufacturing plants in mind. These are meant to provide an easily accessible starting point for facilities that wish to reduce costs and energy consumption, and are based on common recommendations from the Texas A&M University IAC program.
3

Analysis and Full-scale Experiment on Energy Consumption of Hotels in Taiwan

Wang, You-Hsuan 13 June 2003 (has links)
Being located in subtropical area, the weather in Taiwan is constantly hot and humid which imposes huge cooling load on buildings. Especially, the economic booms in Taiwan further boosted power demand, and worsened the power shortage situation. Dr. H.T. Lin and Dr. K.H. Yang had conducted systematic research since mid-1980s, which constructed a solid ground in this field in Taiwan. Among these results, the ENVLOAD index has become legal binding since 1997 while the PACS index is now under investigation. However, it is in short of analysis and full-scale experimental investigation on energy use of hotels in Taiwan. Therefore, the establishment of the EUI and DUI indexes in Taiwan is the goal of this study. A simplified calculation method has been established in analyzing the energy use and demand use of hotels in Taiwan, by normalizing experimental data from full-scale tests. The result can be drawn accurately based on a few terms, which are available from daily building operations such as occupancy, and is thus practically straightforward and easy to use. In addition, the accuracy was validated by experiments performed and data collected through information technology with Internet access in 4 different forms, which yielded successful results. It is anticipated that the calculation methodology developed in this study on EUI and DUI, and the experimental validation would provide a foundation for the establishment of hotel building energy codes in Taiwan in the future.

Page generated in 0.0803 seconds