• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 24
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 137
  • 137
  • 66
  • 62
  • 54
  • 49
  • 46
  • 37
  • 31
  • 31
  • 28
  • 27
  • 26
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Machine Learning Integrated Analytics of Electrode Microstructures

Chance Norris (13872521) 17 October 2022 (has links)
<p>In the pursuit to develop safe and reliable lithium-ion batteries, it is imperative to understand all the variabilities that revolve around electrodes. Current cutting-edge physics-based simulations employ an image-based technique. This technique uses images of electrodes to extract effective properties that are used in these physics-based simulations or employ the simulation on the structure itself. Though the electrode images have spatial variability, various particle morphology, and aberrations that need to be accounted for. This work seeks out to help quantify these variabilities and pinpoint uncertainties that arise in image-based simulations by using machine learning and other data analytic techniques. First, we looked at eighteen graphite electrodes with various particle morphologies to gain a better understanding on how heterogeneity and anisotropy interplay with each other. Moreover, we wanted to see if higher anisotropic particles led to greater heterogeneity, and a higher propensity for changes in effective properties. Multiple image-based algorithms were used to extract tortuosity, conductivity, and elucidate particle shape without the need for segmentation of individual particles. What was found is highly anisotropic particles induces greater heterogeneity in the electrode images, but also tightly packed isotropic particles can do the same. These results arise from porous pathways becoming bottlenecked, resulting in greater likelihood to change values with minimal changes in particle arrangement. Next, a model was deployed to see how these anisotropies and heterogeneities impact electrochemical performance. The thought of whether particle morphology and directional dependencies would have impact on plating energy and heat generation, leading to poor electrochemical performance. By using a pseudo-2D model, we elucidated that the larger the tortuosity the greater the propensity to plate and generate heat. Throughout these studies, it became clear that the segmentation of the greyscale images became the origin for subjectiveness to appear in these studies. We sought to quantify this through machine learning techniques, which employed a Bayesian convolutional neural network. By doing so we aimed to see if image quality impacts uncertainties in our effective properties, and whether we might be able to predict this from image characteristics. Being able to predict effective property uncertainty through image quality did not prove possible, but the ability to predict physics properties based on geometric was able to be done. With the largest uncertain particles occurring at the phase boundaries, morphologies that have a large specific surface area presented with the highest structural uncertainty. Lastly, we wanted to see the impact carbon binder domain morphology uncertainty impacts our effective properties. By using a set of sixteen NMC electrodes, which specify the carbon binder domain weight percentage, we can see how uncertainties in morphology, segmentation, spatial variability, and manufacturing variability impact effective properties. We expected there to be an interplay on which uncertainty impacts various effective properties, and if manufacturing variability plays a large role in determining this. By using surrogate models and statistical methods, we show that there is an eb and flow in uncertainties and effective properties are dependent on which uncertainty is being changed.</p>
32

COUPLING ACTIVE HEAT EXCHANGE AND VACUUM MEMBRANE-BASED AIR DEHUMIDIFICATION FOR HIGH-EFFICIENCY AIR CONDITIONING

Andrew J Fix (17482464) 30 November 2023 (has links)
<p dir="ltr">Building cooling and ventilation account for nearly 10% of the global electricity consumption. In fact, a recent study even showed that, globally, dehumidification consumes more energy than sensible cooling. One high-efficiency dehumidification technology is selective membrane dehumidification. Selective membranes allow water vapor transport but block air transport. There are two overarching gaps in the literature that are addressed in this dissertation: (1) vacuum membrane dehumidification (VMD) has been rigidly defined as an isothermal process and (2) literature on one of the most efficient VMD system designs, which I will refer to as the “dual module humidity pump,” is limited to ideal thermodynamic modeling (no experimental demonstration or practical system modeling in the current literature).</p><p dir="ltr">This work presents a novel system concept, referred to as the “Active Membrane Energy Exchanger” (AMX), which specifically couples VMD and air cooling into one process to provide the first non-isothermal VMD system concept. The present study provides a wholistic understanding of the benefits and limitations of the AMX approach through both thermodynamic system modeling and experimental protype development and demonstration.</p><p dir="ltr">System models developed in Engineering Equation Solver were used to compare the energy performance of the AMX to other HVAC technologies. These models showed that the AMX could achieve up to 25% annual cooling electricity savings in commercial buildings and up to 60% annual cooling electricity savings in 100% outdoor air applications. Experiments showed that combining cooling and dehumidification increased membrane permeance by up to 40% and increased dehumidification performance by 3-6%. Further demonstration showed the prototype could remove up to 45% of the humidity in the humid air flow but struggled to reject all of that vapor to the exhaust air (mass transfer imbalance). This discovery enabled a practical thermofluid model to estimate theoretical and practical COP limits, which were approximately 40 and 10, respectively. Additionally, a global sensitivity analysis on the new model showed that mechanical design is far more limiting to the performance than material design.</p><p dir="ltr">In summary, this dissertation develops and demonstrates a novel air conditioning technology, from system modeling to prototype demonstration. This work was funded and guided by industry partners, and the results of this dissertation are a major step towards real-world implementation.</p>
33

Engineering Spectrally Selective and Dynamic Coatings for Radiative Thermal Management

Joseph Arthur Peoples (13157931) 27 July 2022 (has links)
<p>Radiative thermal management has become increasingly more relevant within the past few decades due to the avocation for higher efficiency buildings, increases in</p> <p>power densities with decreases in form factors, and cutting-edge technologies for space exploration. This research focuses on engineering coatings with spectrally selective optical properties to achieve ultra-efficient thermal management via passive radiative cooling of both terrestrial and extraterrestrial applications. Terrestrial radiative cooling is a phenomenon of passively cooling exterior surfaces below ambient temperatures by engineering coatings to exhibit low absorptance in the solar spectrum (0.25 μm< λ <2.5 μm), such that a minimal amount of solar irradiation is absorbed, and high emittance in the transmissive portion of the atmosphere (8 μm< λ <13μm), i.e. the sky window, to lose heat to deep-space for a net cooling effect. Deep-space is considered to be an infinite heat sink at 3 K. Extraterrestrial radiative cooling requires the same criteria as terrestrial radiative cooling, however, there is no atmosphere to block a portion of the solar irradiation or the emission from the surface. A key requirement for achieving passive radiative cooling for an ideal emitter during daytime is a total solar reflection >85%, and every 1% above this threshold results in ≈10 W/m2 gain in cooling power. Here, recognizing the broadband nature of solar irradiation, we propose and test a new concept of enhancing solar reflection at a given particle volume concentration by using hierarchical particle sizes, which we hypothesize to scatter each band of the solar spectrum, i.e. VIS, NIR and UV effectively. The hypothesis is tested using a TiO2 nanoparticle-acrylic system. Using the Mie Theory, the scattering and absorption efficiencies and asymmetric parameter</p> <p>of nanoparticles with different sizes and combinations are calculated, then the Monte Carlo Method is used to solve the Radiative Transfer Equation. An overall total solar</p> <p>reflection of ≈91%, which is higher than the ≈78% and ≈88% for 100 nm and 400 nm single particle sizes, respectively was achieved from our hypothesis.</p> <p>With increasingly better RC materials being demonstrated in literature, there is a growing need to understand the real-world utility and benefit of RC with regards</p> <p>to energy savings. A fundamental limit of current radiative cooling systems is that only the top surface facing deep-space can provide the radiative cooling effect, while</p> <p>the bottom surface cannot. Here, we propose and experimentally demonstrate a concept of “concentrated radiative cooling” by nesting a radiative cooling system in a mid-infrared reflective trough, so that the lower surface, which does not contribute to radiative cooling in previous systems, can radiate heat to deep-space via the reflective</p> <p>trough. Field experiments show that the temperature drop of a radiative cooling pipe with the trough is more than double that of the standalone radiative cooling</p> <p>pipe. Furthermore, by integrating the concentrated radiative cooling system as a preconditioner in an air conditioning system, we predict electricity savings of > 75% in Phoenix, AZ, and > 80% in Reno, NV, for a single-story commercial building. We further look into unique applications of radiative cooling for outdoor enclosures</p> <p>of electrical equipment, as demonstrated with a case study of coating pole-type distribution transformers. Utilizing RC paint on the exterior of the case would allow further dissipation of heat to deep-space, as well as, increase the solar reflectance to lessen the heat load on the case. A single 25 kVA pole-type transformer is modeled</p> <p>via CFD with two different exterior case coatings, the standard grey coatings commonly utilized and an RC coating, BaSO4 paint, is analyzed under different operating loads. The RC coating demonstrates great benefits from a thermal management perspective</p> <p>and a gain in the lifetime of the windings. The RC coating cooled a 25 kVA distribution transformer’s core by > 11oC when compared to the standard case and even shows below ambient cooling of the case under minimal heat generations. The lifetime of the distribution transformers was increased by a minimum of 55% when comparing the standard case to the case with a radiative cooling paint based on the Aging Acceleration Factor. A more traditional application of radiative cooling paints is to utilize them on the exterior of buildings to offset the cooling energy demand for air conditioning. This work develops a high-fidelity RC model which accounts for pertinent weather factors including precipitable water, sky clearness, and dynamic convective heat transfer coefficients based on wind speed to further understand the energy savings. We implement our RC model on a single-story residential building to study the impact of RC in every unique ASHRAE climate zone in the United States using the 16 DOE recommended representative cities. Our results show > 7% and > 12% cooling energy savings across the United States for NREL’s building and typical buildings, respectively. Furthermore, warm climates yield the greatest cooling energy savings of up to 22% and 46% for the NREL and the Typical building, respectively. Extraterrestrial radiative thermal management is becoming increasingly pertinent with the development of new space technologies and the need to discover what is beyond</p> <p>our world. Space presents extreme thermal environments for radiative transfer, from a total eclipse case where the body radiates to deep space at 3 K to a full solar load where 1400 W/m2 is radiated onto the surface and a hybrid of both situations. The goal of this work is to engineer micropatterned Lanthanum Strontium Manganite</p> <p>(LSM) Barium Sulfate (BaSO4) coatings as efficient variable emissivity coatings (VECs). The photon transport through the micropatterned system is modeled using</p> <p>geometric optics and Monte Carlo coupled with geometric optics to obtain the coatings reflectivity, transmissivity, and emissivity to predict the ideal reflectivity and</p> <p>emissivity of the micropatterns. Then the micropatterned LSM coatings are experimentally fabricated using screen printing on a BaSO4 paint layer. The coatings are</p> <p>characterized by their temperature-dependent variable emissivity and solar absorptivity from the dual-layer micropatterned coatings. Furthermore, a computational model for a body-mounted cylindrical radiator was developed to investigate the real implications a VEC can have on crewed space vehicles, as well as define some target guidelines for VEC’s to achieve in future technologies.</p>
34

30S Beam Development and the 30S Waiting Point in Type I X-Ray Bursts

Kahl, David Miles 09 1900 (has links)
Nuclear physics tells us a lot about astrophysics, particularly the energy generation in stars. The present work is a thesis in experimental nuclear physics, reporting the results of 30S radioactive beam development for a future experiment directly measuring data to extrapolate the 30S(α,p) stellar reaction rate in Type I X-ray bursts, a phenomena where nuclear explosions occur repeatedly on the surface of accreting neutron stars. On the astrophysics side, the work details basic stellar physics and stellar reaction formalism in Chapter 1, the behaviour of compact stars in Chapter 2, and a full literature review of Type I X-ray bursts in Chapter 3. Nuclear experiments are non-trivial, and the results reported here were not accomplished by the author alone. Stable-beam experiments are technically challenging and involved, but for the case at hand, the halflife of 30S is a mere 1.178 seconds, and in order to measure reaction cross-sections, we must make a beam of the radionuclide 30S in situ and use these rare nuclei immediately in our measurement. Particle accelerator technology and radioactive ion production are treated in Chapter 4, and the experimental facility and nuclear measurement techniques are discussed in some detail in Chapter 5. In order to perform a successful future experiment which allows us to calculate the stellar 30S(α, p) reaction rate, calculations indicate we require a 30S beam of ~ 10^5 particles per second at ~ 32 MeV. Based on our recent beam development experiments in 2006 and 2008, it is believed that such a beam may be fabricated in 2009 according to the results presented in Chapters 6 and 7. We plan to measure the 4He(30S,p) cross-section at astrophysical energies in 2009, and some remarks on the planned (α,p) technique are also elucidated in Chapters 5, 6 and 7. / Thesis / Master of Science (MSc)
35

Boat-shaped Buoy Optimization of an Ocean Wave Energy Converter Using Neural Networks and Genetic Algorithms

Lin, Weihan 19 January 2023 (has links)
The point absorber is one of the most popular types of ocean wave energy converter (WEC) that harvests energy from the ocean. Often such a WEC is deployed in an ocean location with tidal currents or ocean streams, or serves as a mobile platform to power the blue economy. The shape of the floating body, or buoy, of the point absorber type WEC is important for the wave energy capture ratio and for the current drag force. In this work, a new approach to optimize the shape of the point absorber buoy is developed to reduce the ocean current drag force on the buoy while capturing more energy from ocean waves. A specific parametric modeling is constructed to define the shape of the buoy with 12 parameters. The implementation of neural networks significantly reduces the computational time compared to solving hydrodynamics equations for each iteration. And the optimal shape of the buoy is solved using a genetic algorithm with multiple self-defined functions. The final optimal shape of the buoy in a case study reduces 68.7% of current drag force compared to a cylinder-shaped buoy, while maintaining the same level of energy capture ratio from ocean waves. The method presented in this work has the capability to define and optimize a complex buoy shape, and solve for a multi-objective optimization problem. / Master of Science / The marine kinetic energy includes ocean waves power, tidal power, ocean current power, ocean thermal power and river power. The total potential marine kinetic energy in 2021 is 2300 TWh/year, where 1400 TWh/year is from the ocean wave power. To discover and harvest the huge potential power from the marine, researchers have been developed for different types of WECs for several decades. One of the most successful concepts is the point absorber typed WEC, which can extract waver energy from the heaving vibration motion of a floating body and convert the kinetic energy into electrical energy. This thesis presents an optimization strategy to optimize the shape of the floating body to improve power extraction and reduce the installation cost by implementing the machine learning tool and genetic algorithm. Compared with the state-of-the-art optimization strategies, the proposed optimization method allows the floating body to have more parameters in shape changes and reduces the computational cost from minutes to milliseconds. The final optimized floating body shape performs extraordinarily compared to the other two state-of-the-art floating body shapes.
36

High Resolution Measurements of the Mean Three-dimensional Flow Field in a Natural River

Petrie, John E. 12 June 2013 (has links)
The flow velocity in a river is three-dimensional (3D), turbulent, and varies in time and space. Capturing this variability in field measurements to support studies of river processes has proven particularly challenging. While originally developed to measure discharge, boat-mounted acoustic Doppler current profilers (ADCP) are increasingly used in field studies to quantify flow features including mean velocity, boundary shear stress, and sediment motion. Two survey procedures are typically employed with an ADCP. Moving-vessel (MV) measurements provide spatially-rich velocity data while temporally-rich data are obtained with fixed-vessel (FV) procedures. Given the relative ease of MV measurements, recent work has focused on developing MV procedures that produce comparable results to FV measurements. At the present, results of this work are inconclusive. Additionally, there is a lack of reported data and procedures for FV measurements. This work seeks to develop techniques to present 3D velocity data obtained in natural rivers in a unified framework. This framework is based on a stream-fitted coordinate system defined by the flow direction at a cross section and allows for 3D velocity to be decomposed into streamwise, spanwise, and vertical components. Procedures are developed to assure that the velocity profiles measured at fixed locations are (1) not negatively impacted by the inevitable motion of the ADCP, (2) statistically stationary, and (3) of sufficient record length to determine the mean velocity. The coordinate system allows time-averaged velocity from FV procedures to be compared with spatially-averaged velocity from MV vessels. Significant differences are found between the two survey procedures, particularly for secondary velocity components. Ultimately, integrating results of the two survey procedures leads to an improved representation of the mean flow field. The techniques are applied to data obtained on a study reach on the lower Roanoke River, located in eastern North Carolina. / Ph. D.
37

Análise da inserção de geração eólica com aerogeradores de indução / Grid integration analysis for wind power with induction generators

Zanchettin, Marcos Guilherme 25 April 2012 (has links)
Made available in DSpace on 2017-07-10T17:11:51Z (GMT). No. of bitstreams: 1 MARCOS GUILHERME ZANCHETTIN.pdf: 1368217 bytes, checksum: 2ad7e15a270a9abefc8d6f85f3ba01e0 (MD5) Previous issue date: 2012-04-25 / The wind generation has stood out among the alternative sources and has experienced a high rate of penetration through the years. Thus, the electrical connection of wind power generation must be analyzed in detail to avoid or minimize the problems inherent this type of source can cause in electric power systems (SEP) and thereby preserve the voltage quality indicators and reliability. This paper deal about the integration of wind farms in SEP, equipped with squirrel-cage induction generator based fixed speed wind turbines (AVV-SCIG) and doublyfed induction generator based variable speed wind turbines (AVV-DFIG). The limits of integration of wind energy generation, i.e., the amount of power that the wind farm can provide the point-of-common-connection (PCC) while complying with certain interconnections requirements, are obtained considering static and transient aspects of the connection of wind farms. The topology adopted to represent, in a simplified way, the local characteristics of the connection between the wind farm and the SEP, as well as characterize the integration of wind generation from the parameters of the PCC, is the single machine infinite-bus system (MBI). Throughout the text also are presents the models used to represent the wind turbine and wind farm in studies of power systems, the main criteria specified to connection of this type of source in SEP and the main issues dealing with the problem of integration of generation wind. The analyzes aim to assess how the wind energy generation is impacted by technical criteria that consider static and transient aspects of the connection of wind farms, the technology used in energy conversion, the control strategy/operation and the characteristics of PCC. The results obtained allow to define which the stricts conditions for the integration of wind energy generation. For these analyzes are considered the criteria of the maximum allowable voltage variation at the connection point of the wind farm, the power range for the maximum transferable power to the electrical system and the fault ride through capability. / A geração eólica vem se destacando entre as fontes alternativas e tem experimentado um elevado índice de pene- tração ao longo dos anos. Assim, a conexão elétrica de parques eólicos precisa ser analisada detalhadamente a fim de evitar ou minimizar os efeitos que os problemas inerentes desse tipo de fonte, geração eólica, podem causar em sistemas elétrico de potência (SEP) e com isso preservar os indicadores de qualidade de tensão e confiabilidade. Este trabalho trata da integração de centrais eólicas em SEP, equipadas com aerogeradores de velocidade fixa com gerador de indução de rotor em gaiola (AVF-SCIG) e aerogeradores de velocidade variável com gerador de indução duplamente alimentado (AVV-DFIG). Os limites de inserção de geração eólica, i.e., a quantidade de potência que o parque eólico pode fornecer ao ponto comum de conexão (PCC) tendo que atender certos critérios da integração, são obtidos considerando aspectos estáticos e transitórios da conexão de centrais eólicas. A topologia adotada para representar, de maneira simplificada, as características locais de conexão entre o parque eólico e o SEP, assim como caracterizar a inserção de geração eólica a partir dos parâmetros do PCC, é o modelo máquina barra-infinita (MBI). Ao longo do texto também são apresentados os modelos empregados para representar tanto o aerogerador quanto o parque eólico em estudos de sistemas de potência, os principais critérios especificados para a conexão desse tipo de fonte em SEP e as principais questões que tratam do problema de inserção de geração eólica. As análises têm por objetivo avaliar como a inserção de geração eólica é impactada por critérios técnicos que consideram aspectos estáticos e transitórios da conexão de centrais eólicas, pela tecnologia empregada na conversão de energia, pela estratégia de controle/operação e pelas características do PCC. Os resultados obtidos permitem definir quais as condições mais severas à inserção de geração eólica. Para estas análises são considerados os critérios da máxima variação de tensão admissível no ponto de conexão da central eólica, a margem de potência relativamente à máxima potência transferível ao sistema elétrico e a capacidade de sustentação durante faltas.
38

Quantification of uncertainty in the magnetic characteristic of steel and permanent magnets and their effect on the performance of permanent magnet synchronous machine

Abhijit Sahu (5930828) 15 August 2019 (has links)
<div>The numerical calculation of the electromagnetic fields within electric machines is sensitive to the magnetic characteristic of steel. However, the magnetic characteristic of steel is uncertain due to fluctuations in alloy composition, possible contamination, and other manufacturing process variations including punching. Previous attempts to quantify magnetic uncertainty due to punching are based on parametric analytical models of <i>B-H</i> curves, where the uncertainty is reflected by model parameters. In this work, we set forth a data-driven approach for quantifying the uncertainty due to punching in <i>B-H</i> curves. In addition to the magnetic characteristics of steel lamination, the remanent flux density (<i>B<sub>r</sub></i>) exhibited by the permanent magnets in a permanent magnet synchronous machine (PMSM) is also uncertain due to unpredictable variations in the manufacturing process. Previous studies consider the impact of uncertainties in <i>B-H</i> curves and <i>B<sub>r</sub></i> of the permanent magnets on the average torque, cogging torque, torque ripple and losses of a PMSM. However, studies pertaining to the impact of these uncertainties on the combined machine/drive system of a PMSM is scarce in the literature. Hence, the objective of this work is to study the effect of <i>B-H</i> and <i>B<sub>r</sub></i> uncertainties on the performance of a PMSM machine/drive system using a validated finite element simulator. </div><div>Our approach is as follows. First, we use principal component analysis to build a reduced-order stochastic model of <i>B-H</i> curves from a synthetic dataset containing <i>B-H</i> curves affected by punching. Second, we model the the uncertainty in <i>B<sub>r</sub></i> and other uncertainties in <i>B-H</i> characteristics e.g., due to unknown state of the material composition and unavailability of accurate data in deep saturation region. Third, to overcome the computational limitations of the finite element simulator, we replace it with surrogate models based on Gaussian process regression. Fourth, we perform propagation studies to assess the effect of <i>B-H</i> and <i>B<sub>r</sub></i> uncertainties on the average torque, torque ripple and the PMSM machine/drive system using the constructed surrogate models.</div>
39

Ensuring Large-Displacement Stability in ac Microgrids

Thomas E Craddock (7023038) 13 August 2019 (has links)
<div>Aerospace and shipboard power systems, as well as merging terrestrial microgrids, typically include a large ercentage of regulated power-electronic loads. It is well nown that such systems are prone to so-called negative- mpedance instabilities that may lead to deleterious scillations and/or the complete collapse of bus voltage. umerous small-displacement criteria have been developed o ensure dynamic stability for small load perturbations, and echniques for estimating the regions of asymptotic stability bout specic equilibrium points have previously been established. However, these criteria and analysis techniques o not guarantee system stability following large nd/or rapid changes in net load power. More recent research as focused on establishing criteria that ensure arge-displacement stability for arbitrary time varying loads rovided that the net load power is bounded. These yapunov-based techniques and recent advancements in eachability analysis described in this thesis are applied to xample dc and ac microgrids to not only introduce a large- isplacement stability margin, but to demonstrate that the elected systems can be designed to be large-displacement table with practicable constraints and parameters.</div>
40

Metodologia para estimar a linha de base de projeto MDL conectado a sistema elétrico: uma abordagem prospectiva. / Methodology to estimate the baseline emissions by a grid connected CDM project activity: a forecasting approach.

Reis, Tereza Virginia Mousinho 14 May 2009 (has links)
Essa pesquisa tem como objetivo propor um novo referencial metodológico para estimar a linha de base para projetos de MDL a serem conectados ao sistema interligado nacional SIN, a partir de uma visão do mix futuro das fontes energéticas que serão responsáveis pelas gerações de energia, nos próximos dez anos. Objetiva também aplicar essa nova abordagem para calcular as emissões deslocadas pelas atividades de projetos de MDL, através do cálculo do fator de substituição, medido em tCO2/MWh. Este fator estima a redução das emissões decorrente da substituição de parte da energia gerada pelas usinas térmicas convencionais, pela entrada no sistema de usinas que geram energia limpa e/ou pela redução da demanda agregada do sistema elétrico pela implementação de programas/medidas de eficiência energética pelo lado da demanda Para tanto, usando um modelo que simula o equilíbrio entre a oferta elétrica e os requisitos de energia previstos para o horizonte de 10 anos de energia calcula-se, inicialmente, as emissões dos GEE do sistema elétrico sem considerar a entrada do projeto de MDL. Na seqüência, as emissões do sistema elétrico são novamente calculadas, considerando a entrada do projeto MDL. Atualmente a linha de base do SIN é calculada, mensalmente, com base no Tool to calculate the emission factor for an eletricity system, que é uma ferramenta metodológica aprovada pelo CE do MDL, para determinar o fator de emissão de sistemas elétricos interligados. Essa ferramenta determina o fator de emissão de atividades de projetos que substituem eletricidade gerada na rede elétrica. Sustenta-se nesta pesquisa que é pouco provável, pelo menos no SIN, que as condições observadas em anos recentes e/ou atuais se reproduzam no futuro. Ao contrário do que ocorria até poucos anos atrás, em que a expansão do sistema elétrico era basicamente assentada em empreendimentos hidrelétricos, na atualidade desenha-se uma clara tendência à fossilização da matriz do setor elétrico nacional. Os resultados do trabalho mostraram que há uma tendência de elevação das emissões do SIN, embora o comportamento do Fator de Substituição, em termos anuais apresente variações importantes, em função das reais necessidades do despacho das térmicas inflexíveis que servem ao SIN a cada ano. No entanto, considerando todo o período estudado, os resultados encontrados são coerentes com o aumento da participação das UTE emissoras dos GEE no mix futuro das fontes energéticas que fornecerão eletricidade ao SIN. Os valores obtidos dos fatores de substituição (FSSINp) para todos os experimentos, entre 2008 e 2017, são significativamente superiores à linha de base do SIN de 2007, calculada com base no Tool to calculate the emission factor for an electricity system. / This research has as a goal propose a new methodological reference to assess the baseline for CDM projects designed to be connected to the national connected system SIN, coming from a foreseen sight of the energetic sources mix that will be responsible for the energy generation, in the next ten years and apply the news approach to calculate the emissions move to distinct amounts of entry energies of SIN, either by generation of new plants that do not generate emissions of GHE, except concern nuclear plants, or by the reduction of future demand of electrical energy, originated from the implantation of programs/measures of energetic efficiency considering demand. The factor of emission replacement factor of the electrical system measures the energy movement generated by the plants that serve the electrical system by the entrance of new plants that do not generate emissions of GHE. Thus, using a model that simulates the balance between supply and requirements for electric energy provided to the horizon of 10 years of energy it is estimated, initially, the GHG emissions of the electric system without considering the input of the CDM project. Following the emissions of the electric system are again calculated, considering the entry of the CDM project. Currently, the SIN baseline is calculated, monthly as a base tool to calculate the emission factor for an electricity system, which is a methodological tool approved by the CDM Executive Board, to determine emission factor of electrical systems. This thesis sustains that it is unlikely, at last in the SIN that the conditions noticed in recent years and/or conditions, will reproduce in the future. On the contrary of what has occurred a few years ago, in which the expansion of the electrical system was basically set up in hydro electrical enterprise, nowadays there is a trend toward fossilization of matrix of national electrical sector. The results of the study showed that there is a trend of increased emissions of SIN, but behavior of Factor Substitution in the year, vary in important ways, depending on the needs of the order of thermal inflexible to serve the SIN each year. However, considering the whole period studied, the results are consistent with the increased participation of the GHG emission UTEs in future mix of energy sources that will provide electricity to the SIN. The values of the factors of substitution (FSSINp) for all experiments, between 2008 and 2017 are significantly above the baseline of SIN, 2007, calculated on the Tool do calculate the emission factor for an electricity system.

Page generated in 0.1194 seconds