Spelling suggestions: "subject:"conergy harvesting circuit"" "subject:"coenergy harvesting circuit""
1 |
DESIGN OF ULTRA-LOW POWER FINFET CHARGE PUMPS FOR ENERGY HARVESTING SYSTEMSMohan Krishna Atluri (19200145) 03 September 2024 (has links)
<p dir="ltr">This work introduces an ultra-low-voltage charge pump for energy harvesters in biosensors. The unique aspect of the proposed charge pump is its two-level design, where the first stage elevates the voltage to a specific level, and the output voltage of this stage becomes the input voltage of the second stage. Using two levels reduces the number of stages in a charge pump and improves efficiency to get a higher voltage gain. In our measurements, this charge pump design could convert a low 85mV input voltage to a substantial 608.2mV output voltage, approximately 7.15 times the input voltage, while maintaining a load resistance of 7MΩ and a 29.5% conversion efficiency.</p>
|
2 |
Investigation of a complex conjugate matching circuit for a piezoelectric energy harvesterKu Ahamad, Ku Nurul Edhura January 2018 (has links)
The work described in this thesis is aimed at developing a novel piezoelectric cantilever energy harvesting circuit, so that more energy can be obtained from a particular piezoelectric harvester than is possible using conventional circuits. The main focus of the work was to design, build and test a proof of principle system, and not a commercial version, so as to determine any limitations to the circuit. The circuit functions by cancelling the capacitive output reactance of the piezoelectric harvester with a simulated inductance, and is based on an idea proposed by Qi in 2011. Although Qi's approach demonstrated that the circuit could function, the system proved too lossy, and so a less lossy version is attempted here. Experimental and software simulations are provided to verify the theoretical predictions. A prototype amplified inductor circuit was simulated and tested. From the simulation results, although harmonic current losses were found in the circuit, it was found that the circuit should produce an amplified effective inductance and a maximum output power of 165mW. The effective inductance is derived from the voltage across the 2H inductor, and this voltage is amplified and applied to the circuit via an inverter, to provide an extra simulated inductance, so that the overall inductance can be resonated with the piezoelectric harvester output capacitance. Hence the capacitive impedance of the harvester is nearly cancelled. The study and analysis of the amplified inductor circuit was carried out for a single cantilever harvester. Both open loop and closed loop testing of the system were carried out. The open loop test showed that the concept should function as predicted. The purpose of the closed loop test was to make the system automatically adjust for different resonance frequencies. The circuit was tested at 52Vpp inverter output voltage, and demonstrated a harvested power of 145.5mW. Experimental results show that the harvester output power is boosted from 8.8mW as per the manufacturer data sheet to 145.5mW (16.5 times). This is approximately double the power available using circuits described in the literature.
|
Page generated in 0.0696 seconds