• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 2
  • 1
  • Tagged with
  • 29
  • 29
  • 21
  • 10
  • 10
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spin Valve Effect in Ferromagnet-Superconductor-Ferromagnet Single Electron Transistor

Anaya, Armando Alonso 30 March 2005 (has links)
This thesis describes a research of suppression of superconducting gap in a superconducting island of a Ferromagnetic-Superconducting-Ferromagnetic Single-Electron-Transistor due to the fringing magnetic fields produced by the ferromagnetic leads. The devices are working below the critical temperature of the superconducting gap. A model is proposed to explain how the fringing magnetic field produced by the leads is strong enough to suppress the superconducting gap. The peak of the fringing magnetic field produced by one lead reaches 5000 oe. It is observed an inverse tunneling magneto resistance during the suppression of the superconducting gap, obtaining a maximum absolute value 500 times greater than the TMR in the normal state where the efficiency of the spin injection is low. It is concluded that the suppression of the superconducting gap is due to fringing magnetic field and not to the spin accumulation because the low efficiency of the spin injection. It is suggested a new geometry to reduce the effect of the fringing magnetic field so it can be obtained a suppression of the superconductivity due to the spin accumulation. It is described the qualitatively behavior of the IV characteristic when the suppression of the superconductivity is due to spin accumulation.
12

Spectral reconstruction for megavoltage X-ray sources from attentuation measurements

Huerta-Hernandez, Claudia I. January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
13

Automation of calculations in soft-collinear effective theory

Rahn, Rudi Michael January 2016 (has links)
Theoretical predictions for generic multi-scale observables in Quantum Chromodynamics (QCD) typically suffer from large Sudakov logarithms associated with the emission of soft or collinear radiation, whose presence spoils the perturbative expansion in the coupling strength which underlies most calculations in QCD. A canonical way to improve predictions wherever these logarithms appear is to resum them to all perturbative orders, which can conveniently be achieved using Effective Field Theory (EFT) methods. In an age of increasing automation using computers, this task is still mostly performed manually, observable-by-observable. In this thesis we identify the 2-loop soft function as a crucial ingredient for the resummation of QCD Sudakov logarithms to Next-to-next-to-leading logarithmic (NNLL) accuracy in Soft-Collinear Effective Theory (SCET), for wide classes of observables involving two massless colour-charged energetic particles, such as dijet event shapes at lepton colliders, or colour singlet production at hadron colliders. We develop a method to evaluate these soft functions using numerical methods based on sector decomposition and the choice of a convenient parametrisation for the phase space. This allows the factorisation of all implicit (real emission) and explicit (virtual correction) divergences made manifest by dimensional and analytic regularisation. The regulator pole coefficients can then be evaluated numerically following a subtraction and expansion, and two computational tools are presented to perform these numerical integrations, one based on publicly available tools, the other based on our own code. Some technical improvements over naive straightforward numerical evaluation are demonstrated and implemented. This allows us to compute and verify two of three colour structures of the 2-loop bare soft functions for wide ranges of observables with a factorisation theorem. A number of example results - both new and already known - are shown to demonstrate the reach of this approach, and a few possible extensions are sketched. This thesis therefore represents a crucial step towards automation of resummation for generic observables to NNLL accuracy in SCET.
14

On The Origin of Super-Hot Electrons in Intense Laser-Plasma Interactions

Krygier, Andrew 09 August 2013 (has links)
No description available.
15

Quantifying the Quark Gluon Plasma

Everett, Derek S. 29 September 2021 (has links)
No description available.
16

Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

Willis, Christopher Ryan 21 November 2016 (has links)
No description available.
17

Advanced Simulations and Optimization of Intense Laser Interactions

Smith, Joseph Richard Harrison January 2020 (has links)
No description available.
18

Measuring the Neutron Spin Asymmetry A1n in the Valence Quark Region in Hall C at Jefferson Lab

Cardona, Melanie Leigh, 0000-0001-5337-9550 January 2023 (has links)
The quest to understand how the nucleon spin is decomposed into its constituent quark and gluon spin and orbital angular momentum (OAM) components has been at the forefront of nuclear physics for decades. Due to the non-perturbative nature of Quantum Chromodynamics (QCD) - the theory describing how quarks and gluons bind together to form protons and neutrons - making absolute predictions of nucleon spin structure is generally difficult, especially as a function of its quark and gluon longitudinal momentum fraction x. Measurements involving nucleon spin structure serve as a sensitive test for QCD, including ab-initio lattice QCD calculations due to the advent of the quasi-PDF formalism, and various predictions that diverge at large-x. The neutron spin asymmetry A1n at high-x is a key observable for probing nucleon spin structure. In the valence domain (x > 0.5), sea effects are expected to be negligible, and so the total nucleon spin is considered to be carried by the valence quarks. The valence region can therefore enable us to study the role of quark OAM and other non-perturbative effects of the strong force. A1^n was measured in the deep inelastic scattering region of 0.40 < x < 0.75 and 6 < Q^2 < 10 GeV^2 in Hall C at Jefferson Lab using a 10.4 GeV longitudinally polarized electron beam, upgraded polarized He-3 target, and the High Momentum Spectrometer (HMS) and Super High Momentum Spectrometer (SHMS). E12-06-110 provides the first precision data in the valence quark region above x = 0.60, and its preliminary results proved consistent with earlier data disqualifying a pQCD model that excluded quark OAM. Combined with previous world proton data, the ratio of the polarized-to-unpolarized up quark momentum distribution (∆u + ∆anti-u)/(u + anti-u) remained positive at large-x, and the down quark (∆d + ∆anti-d)/(d + anti-d) remained negative. / Physics
19

Femtoscopy of proton-proton collisions in the ALICE experiment

Bock, Nicolas 20 October 2011 (has links)
No description available.
20

Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction

Lee, Clarissa Ai Ling January 2014 (has links)
<p>The dissertation brings together approaches across the fields of physics, critical theory, literary studies, philosophy of physics, sociology of science, and history of science to synthesize a hybrid approach for instigating more rigorous and intense cross-disciplinary interrogations between the sciences and the humanities. I explore the concept of speculation in particle physics and science fiction to examine emergent critical approaches for working in the two areas of literature and physics (the latter through critical science studies), but with the expectation of contributing new insights to media theory, critical code studies, and also the science studies of science fiction. </p><p>There are two levels of conversations going on in the dissertation; at the first level, the discussion is centered on a critical historiography and philosophical implications of the discovery Higgs boson in relation to its position at the intersection of old (current) and the potential for new possibilities in quantum physics; I then position my findings on the Higgs boson in connection to the double-slit experiment that represents foundational inquiries into quantum physics, to demonstrate the bridge between fundamental physics and high energy particle physics. The conceptualization of the variants of the double-slit experiment informs the aforementioned critical comparisons. At the second level of the conversation, theories are produced from a close study of the physics objects as speculative engine for new knowledge generation that are then reconceptualized and re-articulated for extrapolation into the speculative ontology of hard science fiction, particularly the hard science fiction written with the double intent of speaking to the science while producing imaginative and socially conscious science through the literary affordances of science fiction. The works of science fiction examined here demonstrate the tension between the internal values of physics in the practice of theory and experiment and questions on ethics, culture, and morality.</p><p>Nevertheless, the dissertation hopes to show the beginnings of a possibility, through the contentious but generative space provided by speculative physics, to produce more cross-collaborative thinking between physics as represented by the hard sciences, and science fiction representing the objects of literary enterprise and creative evolution.</p> / Dissertation

Page generated in 0.1586 seconds