Spelling suggestions: "subject:"conergy management"" "subject:"coenergy management""
131 |
Modélisation, conception et expérimentation d'un véhicule hybride léger pour usages urbains / Modeling, design and experimental test of an small urban hybrid electric vehicleLoukakou Bounzeki Mbemba, Destiny Conscience Eland 21 December 2012 (has links)
La crise du pétrole et les contraintes écologiques obligent de nombreux constructeurs automobiles à développer des programmes de recherche importants dans le développement des véhicules électriques et hybrides électriques. Dans ce contexte, cette thèse a pour but de vérifier la faisabilité d’une chaine de traction hybride innovante consistant à partir d’unvéhicule thermique existant et à réduire la puissance du moteur thermique tout en ajoutant des moteurs intégrés dans les roues du train arrière. Ce travail a été réalisé dans le cadre d’un projet financé par l’ADEME et en collaboration notamment avec le constructeur automobile AIXAM-MEGA.Plus précisément, le travail de thèse a donc porté sur le dimensionnement des sources énergétiques, la modélisation énergétique et fonctionnelle du véhicule et enfin la réalisation et la caractérisation expérimentale du véhicule.Dans le premier chapitre, l’auteur développe une revue bibliographique relative aux véhicules hybrides électriques existants. Cela permet ensuite d’introduire le concept innovant de chaine de traction hybride décrit ci-dessus, reposant en quelque sorte sur un couplage par la route des puissances de propulsion thermiques et électriques.Dans le deuxième chapitre l’auteur aborde le dimensionnement des sources énergétiques en se focalisant sur les super-condensateurs. Il propose une approche analytique simple de calcul reposant sur les missions définies par le constructeur AIXAM-MEGA. Les modules de supercondensateurs retenus sont ensuite caractérisés expérimentalement (capacité, résistance interne, rendement de stockage…) en prenant en compte l’effet de la température.Les troisième et quatrième chapitres sont consacrés à la modélisation du véhicule. En premier lieu, le troisième chapitre aborde la modélisation énergétique du véhicule. Le véhicule a entièrement été modélisé en utilisant le formalisme de représentation énergétique macroscopique développée initialement au Laboratoire d’Électrotechnique et d’Électroniquede Puissance de Lille. Ce modèle a permis de développer le contrôle du véhicule. Ensuite, dans le quatrième chapitre, l’auteur présente la modélisation fonctionnelle du véhicule par machine d’état. Cela permet de prévoir le comportement du véhicule dans ses différentes phases de vie et de définir les transitions entre ces différentes phases. Cette étape deprototypage virtuel est essentielle afin de vérifier en amont la fonctionnalité du véhicule et sa sécurité.Enfin, le cinquième et dernier chapitre est entièrement consacré à la caractérisation expérimentale du véhicule. Les différents fonctionnements thermiques, électriques et hybrides sont testés lors de vrais essais de roulage.En conclusion, le travail de thèse a abouti à la réalisation d’un véhicule hybride. Les approches de dimensionnement des sources et de modélisation sont ainsi validées, tout en faisant également la preuve de la faisabilité d’une chaine cinématique hybride électrique avec couplage par la route. / The exhaustion, increased cost and location of fossil fuels on the one hand, and the environmental problems caused by emissions of CO2 in the atmosphere on the other hand, are forcing many automotive manufactures to develop major research programs in the designof electric vehicles and hybrid electric. In this context, this thesis aims to test the feasibility ofan innovative hybrid drivetrain consisting of a vehicle from existing heat and reduce engine power while adding motors integrated into the wheels of the rear axle. This work was conducted as part of a project funded by ADEME and also in collaboration with the car manufacturer Aixam-MEGA.More specifically, the thesis has focused on the design of energy sources, energy modeling and functional vehicle and finally the implementation and experimental characterization of the vehicle.In the first chapter, the author develops a literature review on the existing hybrid electric vehicles. This allows then to introduce the innovative concept of hybrid drivetrain described above, based somewhat on a road coupling powers of thermal and electric propulsion.In the second chapter the author discusses the design of energy sources focusing on ultracapacitors. It offers an analytical approach simple calculation based on the tasks set by the manufacturer Aixam-MEGA. Modules selected ultracapacitors are then characterized experimentally (capacity, internal resistance, storage efficiency ...) taking into account the effect of temperature.The third and fourth chapters are devoted to the modeling of the vehicle. First, the third chapter discusses the modeling efficiency of the vehicle. The vehicle has been fully modeled using the formalism of Energetic Macroscopic Representation initially developed at the Laboratory of Electrical and Power Electronics of Lille. This model has led to the development of vehicle control. Then, in the fourth chapter, the author presents the functional modeling of the vehicle state machine. This allows predicting the behavior of the vehicle in its different life phases and defining the transitions between these phases. This stage of virtual prototyping is essential to verify the functionality of the upstream and vehicle safety.Finally, the fifth and final chapter is devoted to the experimental characterization of the vehicle. The different operations thermal, electric and hybrid are tested in real taxi trials.In conclusion, the thesis has led to the realization of a hybrid vehicle. The design approaches and modeling of sources and are validated, while also demonstrated the feasibility of a hybrid electric powertrain coupling the road.
|
132 |
Eneregy Management In Industries : Analysis of Energy Saving potential by Steam conedensate recoveryKifleyesus, Biniam Okbaendrias January 2017 (has links)
When speaking about energy it means speaking about life, activity, economy, growth and environmental issues. The issue of energy has been the main article all over the world in recent years, this is due to the importance of energy to life and its impact on the environment. For example, Paris climate change meeting in 2015 is one of the recent global meeting which directly related to the energy use by nations. The meeting was mainly focused up on the restriction of greenhouse gas emission which implies that industries should think about other alternative energy resources rather than fossil fuel for positive impact on climatic change. This is one of the cases that led industries into greater competition in the global market. Industries must consider energy alternatives which is safe for the environment and by using such energy a competitive product with better quality and quantity should be produced. This challenge has motivated industries to look and study the energy that they are using currently. Studies and researches show that one of the main and most abundant energy resources that most of these industries can get is by improving the energy efficiency or managing the energy that they currently use. The main aim of this thesis is to provide Arizona chemical plant (Kraton) at Sandarne on the potential energy saving by managing their energy use. The first wisdom in energy utilization is managing and using the energy they possess efficiently. In Arizona plant at Sandarne, the product named “Pitch” (a natural viscoelastic polymer or rosin) is a fuel used as the primary energy supply for the production of steam by boilers. The steam may be utilized well but the energy in the condensate (after steam loses its latent heat) is not addressed well enough. Hence this paper has studied on how significant is the energy lost by the steam condensate is and how its recovery can be used to save energy and cost. The plant produces about an average of 11.42 ton of steam each hour in a year. This steam can be returned or fully recovered (100%) as condensate from the law of conservation of mass since only energy is lost from the steam. But the plant returns a maximum of about 3ton of condensate each hour. This amount is relatively low compared to the amount of condensate recovery possibility. Recovery possibility of condensate return showed that the plant at Sandarne can return at least 8.5 ton of condensate each hour. In comparison with the current return estimated 5.5 ton of condensate is being lost simply as waste each hour leading to about 400 SEK minimum cost loss. The calculation of cost is in minimum because the charge from water supply and condensate effluent disposal charge are not considered. In this paper only recovery from the easily recoverable steam condensate is being considered (25% of the system) which resulted in payback time of the proposed investment 1.88 years without considering the above explained charges. It is much motivating study considering the generalized approach and over simplified method. If a deeper investigation is made on the potential, it can be clearly shown that how significant the potential is in securing and sustaining energy and environmental issues. Ensuring the security and sustainability of energy which addresses the environmental issue precisely will help the plant to stay on the race of global market competition. Keywords: Energy efficiency, Boiler efficiency, Energy management, Condensate recovery,
|
133 |
Energy management in a telecommunications environment with associated energy and cost modelling of HVACRabie, Neil 10 November 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MEng (Electrical Engineering))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted
|
134 |
Hybrid Energy Storage Implementation in DC and AC Power System for Efficiency, Power Quality and Reliability ImprovementsFarhadi, Mustafa 07 March 2016 (has links)
Battery storage devices have been widely utilized for different applications. However, for high power applications, battery storage systems come with several challenges, such as the thermal issue, low power density, low life span and high cost. Compared with batteries, supercapacitors have a lower energy density but their power density is very high, and they offer higher cyclic life and efficiency even during fast charge and discharge processes. In this dissertation, new techniques for the control and energy management of the hybrid battery-supercapacitor storage system are developed to improve the performance of the system in terms of efficiency, power quality and reliability.
To evaluate the findings of this dissertation, a laboratory-scale DC microgrid system is designed and implemented. The developed microgrid utilizes a hybrid lead-acid battery and supercapacitor energy storage system and is loaded under various grid conditions. The developed microgrid has also real-time monitoring, control and energy management capabilities.
A new control scheme and real-time energy management algorithm for an actively controlled hybrid DC microgrid is developed to reduce the adverse impacts of pulsed power loads. The developed control scheme is an adaptive current-voltage controller that is based on the moving average measurement technique and an adaptive proportional compensator. Unlike conventional energy control methods, the developed controller has the advantages of controlling both current and voltage of the system. This development is experimentally tested and verified. The results show significant improvements achieved in terms of enhancing the system efficiency, reducing the AC grid voltage drop and mitigating frequency fluctuation.
Moreover, a novel event-based protection scheme for a multi-terminal DC power system has been developed and evaluated. In this technique, fault identification and classifications are performed based on the current derivative method and employing an artificial inductive line impedance. The developed scheme does not require high speed communication and synchronization and it transfers much less data when compared with the traditional method such as the differential protection approach. Moreover, this scheme utilizes less measurement equipment since only the DC bus data is required.
|
135 |
Control of a super-capacitor based energy storage systemWu, Ding January 2014 (has links)
The increasing use of electrical technologies within on-board (aircraft, road vehicle, train and ship) power systems is resulting in complex and highly dynamic networks in which energy storage devices have an important role to play, for example to resolve the instantaneous mismatch between load demand and power availability or to provide the flexibility to optimise overall performance. In this thesis, a multi-level controller for a super-capacitor based energy storage system (ESS) is designed, simulated, emulated and validated experimentally to show its effectiveness in smoothing load and managing state-of-charge of the energy storage system. This thesis first investigates the low level control of the dual-interleaved converter, particularly at light load where seven discontinuous conduction modes (DCMs) appear. A thorough analysis of these operating modes is given and validated by simulations and experiments. Based on the analysis, an inverse-model-based feed-forward current controller is implemented, offering a low level converter control interface which serves the high level supervisory controller within the energy storage system. Two supervisory control methods have been proposed in this thesis, both producing a super-capacitor current reference for the low level controller. The first supervisory control not only manages the energy within the ESS but also shields the primary power source from rapid load transients , which has been examined through an emulated ESS in the Intelligent Electrical Power Network Evaluation Facility (IEPNEF). A more advanced supervisory controller is then proposed which in addition to the benefits of the first control, regulates the rate-of-change in power that is drawn from the primary power source in the system. The proposed second control method is implemented within a real super-capacitor energy storage system in IEPNEF, with both simulation and experimental results successfully demonstrating and validating its operation.
|
136 |
Plataforma automatizada e normatizada de monitoração, verificação e gestão de índices de energiaCastro, Renato Ely January 2014 (has links)
Este trabalho descreve os requisitos para definição, implantação, manutenção e melhoria de sistemas de gestão de energia no ambiente industrial com um enfoque sistemático no que se refere às rotinas de melhoria contínua para eficiência energética. Para tanto, propôs-se a estruturação de uma plataforma automatizada visando o monitoramento, verificação e gerenciamento de recursos energéticos compatível com um sistema de gestão de energia normatizado, incluindo os requisitos de uso e consumo de energia, além do monitoramento, documentação, comunicação, melhores práticas de projeto, aquisição de equipamentos, sistemas, processos e recursos humanos envolvidos no desempenho energético. A estratégia de análise do uso da energia proposta neste trabalho baseou-se na metodologia de monitoramento e gestão de índices que consiste em uma abordagem sistemática na utilização de recursos energéticos objetivando alcançar o melhor resultado econômico através da gestão permanente do consumo de energia. Além disso, propôs-se a inclusão dessa metodologia como um procedimento na fase de planejamento da norma ISO50001, a qual estabelece os conceitos para a implantação de sistemas de gestão de energia. Visando integrar as ferramentas associadas a este cenário, esta plataforma contempla o uso de um sistema de supervisão associado a um aplicativo (Soft-PLC) que executa a aplicação de controle do uso de energia em um ambiente industrial com automação distribuída compatível com a norma IEC61131. O projeto do aplicativo de controle do uso de energia foi conduzido adotando-se diferentes linguagens de programação definidas na IEC para executar todos os procedimentos de medição, monitoração e gestão exigidos pelo sistema, incluindo análise comparativa com as “melhores práticas”, uso de tecnologias inovadoras, abordagem de produto e serviço, auditoria energética e conformidade com marcos regulatórios. Os resultados decorrentes da adoção de uma plataforma baseada em automação para o gerenciamento energético incluem elevada flexibilidade, adaptabilidade e usabilidade do sistema. Além disso, um projeto de automação neste cenário de plataforma aberta tende a apresentar menores custos de desenvolvimento e implantação. / This work describes the requirements for the definition, implementation, maintenance and improvement of energy management systems in the industrial environment with a systematic approach concerning continuous improvement routines for energy efficiency. For this purpose, it was proposed the establishment of a framework based on automation to implement monitoring, verification and management of energy resources compatible with a standardized energy management system, including requirements for energy use and consumption, in addition to monitoring, documentation, communication, project best practices, equipment acquisition, systems, processes and human resources involved in energy performance. The strategy of energy use analysis proposed in this work is based on the methodology of monitoring and targeting that consists of a systematic approach in the use of energy resources in order to achieve the best economic result through the permanent management of energy consumption. Furthermore, this work includes that system as a procedure in the planning phase of ISO50001 standard which establishes the concepts for energy management systems implementation. In order to aggregate all tools associated to this scenario, this paper proposes the use of a supervisory tool integrated to a real-time software (Soft-PLC) that runs the control application and a factory floor distributed system automation hardware in an IEC61131 compatible environment. The project of the control application of energy use was conducted using different programming languages defined in IEC to perform all the procedures of measurement, monitoring and management required by the system, including comparative analysis with the "best practices", use of innovative technologies, product and service approach, energy audit and compliance with regulatory milestones. The expected results of adopting an automation-based platform for energetic management include system flexibility, adaptability and usability. Besides, a project of automation in this scenario of open platform tends to introduce lower development and deployment costs.
|
137 |
Construção e comparação de modelos de consumo de energia para plataformas androidFIRMINO, Emiliano Carlos de Moraes 04 March 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-11T13:14:54Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
[UFPE-PPGEE] MSc_Emiliano.pdf: 3950976 bytes, checksum: 20ac0d1d3243534f93d5ec1a48edbdd9 (MD5) / Made available in DSpace on 2017-07-11T13:14:54Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
[UFPE-PPGEE] MSc_Emiliano.pdf: 3950976 bytes, checksum: 20ac0d1d3243534f93d5ec1a48edbdd9 (MD5)
Previous issue date: 2016-03-04 / Esta dissertação de mestrado investiga o consumo e a modelagem de energia para
smartphones que usam o sistema operacional Android. A principal reclamação dos
usuários e desafio aos fabricantes é a limitada duração da carga da bateria desses
dispositivos. Para melhor entender o problema, esta dissertação faz ampla revisão da
literatura visando identificar os principais componentes responsáveis pelo alto consumo de
energia, os modelos de consumo de energia empregados e as estratégias de otimização
propostas e utilizadas. Foi construída uma ferramenta em software e levado a cabo um
conjunto de experimentos para medir o consumo de energia dos principais componentes. A
dissertação apresenta um novo modelo de consumo de energia desenvolvido com técnicas
de regressão estatísticas para descrever o padrão de consumo dos componentes. O modelo
produzido foi comparado a outros encontrados na revisão da literatura por meio de
simulações de consumo com base em dados coletados. Por fim, os resultados foram
analisados e as conclusões apresentadas. / This M.Sc. dissertation investigates the power consumption and modeling for
Android smartphones. The most common issue reported by users and a constant challenge
to manufacurers is how to handle the limited duration of the battery charge for those
devices. To better understand such a problem, this dissertations presents an extensive
review of the literature to identify the key components that drains most of the power and
which power consumption models and optimization strategies are currently being used to
handle such a problem. That information was used to develop a software tool and a set of
experiments to measure the energy consumption of those key components. A new power
consumption model is proposed here based on statistical regression to describe those key
components. The model presented was compared with those found in the technical
literature using simulations based on the data collected. Finally, the results obtained are
analyzed and conclusions drawn.
|
138 |
Energy Management System in Naval SubmarinesJanuary 2020 (has links)
abstract: An optimal energy scheduling procedure is essential in an isolated environment such as naval submarines. Conventional naval submarines include diesel-electric propulsion systems, which utilize diesel generators along with batteries and fuel cells. Submarines can charge the batteries by running diesel-electric generators only at the surface or at snorkeling depth. This is the most dangerous time for submarines to be detectable by acoustic and non-acoustic sensors of enemy assets. Optimizing the energy resources while reducing the need for snorkeling is the main factor to enhance underwater endurance. This thesis introduces an energy management system (EMS) as a supervisory tool for the officers onboard to plan energy schedules in order to complete various missions. The EMS for a 4,000-ton class conventional submarine is developed to minimize snorkeling and satisfy various conditions of practically designed missions by optimizing the energy resources, such as Lithium-ion batteries, Proton-exchange membrane fuel cells, and diesel-electric generators. Eventually, the optimized energy schedules with the minimum snorkeling hours are produced for five mission scenarios. More importantly, this EMS performs deterministic and stochastic operational scheduling processes to provide secured optimal schedules which contains outages in the power generation and storage systems. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2020
|
139 |
Gestion et optimisation d’énergie électrique avec tolérance aux défauts d’un système hybride PàC/ batterie / Energy management and optimization with faults tolerance of an FC/battery hybrid systemBendjedia, Bachir 16 November 2018 (has links)
Le travail de cette thèse s’inscrit dans une thématique qui concerne le dimensionnement optimal et la gestion d’énergie résiliente aux défauts d’un système multi-sources (hybride) pour l’alimentation d’un véhicule électrique. Dans notre cas, le système de stockage est composé d’une pile à combustible comme source principale et une source secondaire à base d’une batterie Li-ion. L’étude réalisée sur le dimensionnement montre l’intérêt de l’hybridation par rapport à un système mono-source batterie seule ou bien pile à combustible seule. L’intérêt de cette hybridation en termes de masse, de volume et de coût devient de plus en plus important en augmentant l’autonomie du véhicule. Après avoir dimensionné la source hybride pour une autonomie de 700 km, on s’est intéressé à l’influence de la technologie de la batterie et les méthodes de gestion sur les performances de la source (le volume, la masse, le cout, les contraintes électriques appliquées sur les composants et la consommation d’hydrogène du système PàC/Batterie). La partie dimensionnement est suivie par le développement d’une stratégie de gestion d’énergie originale basée sur la prise en compte de l’état de charge de la batterie (SOC) pour adapter les limites de fonctionnement de la pile à combustible. Les résultats obtenus avec cette méthode sont comparés avec deux autres stratégies de gestion d’énergie en ligne à savoir, la méthode de découpage fréquentiel et l’utilisation d’un superviseur floue. La stratégie développée a donné des bons résultats expérimentaux en termes de contraintes vues par les cellules et de consommation d’hydrogène. Malgré un bon dimensionnement de la source embarquée et une bonne optimisation de la méthode de gestion d’énergie, le système n’est pas à l’abri du défaut et peut être le siège de plusieurs défauts qui peuvent apparaitre au niveau de capteurs de tension et de courant. Afin d’assurer la continuité de service du système hybride en présence de ces défauts, une stratégie de commande tolérante aux fautes a été développée afin de garantir la stabilité de système hybride PàC/Batterie et assurer des performances acceptables en mode dégradé. / The work of this thesis is part of a theme that concerns the optimal sizing and energy management resilient to the faults of a multi-source system (hybrid) for the power supply of an electric vehicle. In our case, the storage system consists of a fuel cell as the main source and a secondary source based on a Li-ion battery. The study carried out on the sizing shows the interest of the hybridization compared to a mono-source single battery or fuel cell only system. The interest of this hybridization in terms of weight, volume and cost becomes more and more important by increasing the autonomy of the vehicle. After scaling the hybrid source for a 700 km drive range, we investigated the influence of battery technology and management methods on the performance of the source (volume, mass, cost, electrical stress applied to the components and the hydrogen consumption of the Fuel Cell / Battery system).The sizing part is followed by the development of an original energy management strategy based on the state of charge of the battery (SOC) to adapt the operating limits of the fuel cell. The results obtained with this method are compared with two other online energy management strategies namely, the frequency division method and the use of a fuzzy supervisor. The strategy developed gave good experimental results in terms of constraints seen by cells and hydrogen consumption. Despite a good sizing of the on-board source and a good optimization of the energy management method, the system is not immune from the fault and can be the seat of several faults that can appear at voltage sensors. and current. In order to ensure the service continuity of the hybrid system in the presence of these faults, a fault-tolerant control strategy has been developed in order to guarantee the stability of the hybrid Fuel Cell/ Battery system and to ensure acceptable performance in degraded mode.
|
140 |
Intégration de diverses conditions de fonctionnement dans l'identification en temps réel et la gestion énergétique d'un véhicule à pile à combustible = Integrating various operating conditions into real-time identification and energy management of a fuel cell vehicleKandidayeni, Mohsen January 2020 (has links) (PDF)
No description available.
|
Page generated in 0.0857 seconds