Spelling suggestions: "subject:"conergy pathways"" "subject:"coenergy pathways""
1 |
Modèles simplifiés d’Analyse de Cycle de Vie : cadre méthodologique et applications aux filières de conversion d’énergie / Simplified Life Cycle Assessment models : methodological framework and applications to energy pathwaysPadey, Pierryves 27 November 2013 (has links)
La transition énergétique est un enjeu majeur actuel et des années à venir. Parmi les défis qu’elle va soulever figure la limitation des impacts environnementaux de la production d’électricité. Pour cela, des outils d’aide à la décision, simples d’utilisation et suffisamment précis, considérant les aspects environnementaux et permettant d’optimiser les choix énergétiques futurs, doivent être mis en place. L’analyse environnementale d’une filière de conversion d’énergie est un sujet complexe. Elle comporte en effet deux niveaux. Le niveau « filière », caractérise le profil global d’impacts environnementaux des systèmes, et le niveau « système » caractérise leurs impacts, permettant ainsi une analyse intra-filière. Pour répondre à ce besoin de caractérisation en deux niveaux, nous proposons une méthodologie générique permettant de développer des modèles d’estimation des profils environnementaux de chacune des filières et d’estimer simplement ceux des systèmes qui la composent sans avoir à réaliser une étude détaillée. Cette méthodologie repose sur la définition d’un modèle d’Analyse de Cycle de Vie paramétré prenant en compte, par Analyse Globale de Sensibilité, un large échantillon de systèmes représentatif des configurations observées en pratique au sein des filières. Dans un second temps, des modèles simplifiés estimant les performances environnementales des systèmes sont définis, en fonction de quelques paramètres clefs identifiés comme expliquant la plus grande part de variance des impacts environnementaux de la filière. Cette méthodologie de réduction de modèle a été appliquée à la filière éolienne terrestre en Europe et à la filière photovoltaïque résidentielle en France. / The energy transition debate is a key issue for today and the coming years. One of the challenges is to limit the environmental impacts of electricity production. Decision support tools, sufficiently accurate, simple to use, accounting for environmental aspects and favoring future energetic choices, must be implemented. However, the environmental assessment of the energy pathways is complex, and it means considering a two levels characterization. The “energy pathway” is the 1st level and corresponds to its environmental distribution, to compare overall pathways. The “system pathway” is the 2nd level and compares environmental impacts of systems within each pathway. We have devised a generic methodology covering both necessary characterization levels by estimating the energy pathways environmental profiles while allowing a simple comparison of its systems environmental impacts. This methodology is based on the definition of a parameterized Life Cycle Assessment model and considers, through a Global Sensitivity Analysis, the environmental impacts of a large sample of systems representative of an energy pathway. As a second step, this methodology defines simplified models based on few key parameters identified as inducing the largest variability in the energy pathway environmental impacts. These models assess in a simple way the systems environmental impacts, avoiding any complex LCAs. This reduction methodology has been applied to the onshore wind power energy pathway in Europe and the photovoltaic energy pathway in France.
|
2 |
Simulation of the human energy system / Cornelis Petrus BothaBotha, Cornelis Petrus January 2002 (has links)
Preface -
Biotechnology is generally accepted to be the next economical wave of the future. In order to attain
the many benefits associated with this growing industry simulation modelling techniques have to be
implemented successfully. One of the simulations that ne' ed to be performed is that of the human
energy system.
Pharmaceutical companies are currently pouring vast amounts of capital into research regarding
simulation of bodily processes. Their aim is to develop cures, treatments, medication, etc. for major
diseases. These diseases include epidemics like diabetes, cancer, cardiovascular diseases, obesity,
stress, hypertension, etc. One of the most important driving forces behind these diseases is poor
blood sugar control.
The blood glucose system is one of the major subsystems of the complete human energy system. In
this study a simulation model and procedure for simulating blood glucose response due to various
external influences on the human body is presented.
The study is presented in two parts. The first is the development of a novel concept for quantifying
glucose energy flow into, within and out of the human energy system. The new quantification unit
is called ets (equivalent teaspoons sugar). The second part of the study is the implementation of the
ets concept in order to develop the simulation model.
Development of the ets concept -
In the first part of the study the ets concept, used for predicting glycaemic response, is developed
and presented.
The two current methods for predicting glycaemic response due to ingestion of food are discussed,
namely carbohydrate counting and the glycaemic index. Furthermore, it is shown that it is currently
incorrectly assumed that 100% of the chemical energy contained in food is available to the human
energy system after consumption. The ets concept is derived to provide a better measure of
available energy from food.
In order to verify the ets concept, two links with ets are investigated. These are the links with
insulin response prediction as well as with endurance energy expenditure. It is shown that with both
these links linear relationships provide a good approximation of empirical data. It is also shown that
individualised characterisation of different people is only dependent on a single measurable variable
for each link.
Lastly, two novel applications of the ets concept are considered. The first is a new method to use the
ets values associated with food and energy expenditure in order to calculate both short-acting and
long-acting insulin dosages for Type 1 diabetics. The second application entails a new
quantification method for describing the effects of stress and illness in terms of ets.
Development of the blood glucose simulation model -
The second part of the study presents a literature study regarding human physiology, the
development for the blood glucose simulation model as well as a verification study of the
simulation model.
Firstly, a brief overview is given for the need and motivation behind simulation is given. A
discussion on the implementation of the techniques for construction of the model is also shown. The
procedure for solving the model is then outlined.
During the literature study regarding human physiology two detailed schematic layouts are
presented and discussed. The first layout involves the complex flow pathways of energy through the
human energy system. The second layout presents a detailed discussion on the control system
involved with the glucose energy pathway.
Following the literature review the model for predicting glycaemic response is proposed. The
design of the component models used for the simulations of the internal processes are developed in
detail as well as the control strategies implemented for the control system of the simulation model.
Lastly, the simulation model is applied for glycaemic response prediction of actual test subjects and
the quality of the predictions are evaluated. The verification of the model and the procedure is
performed by comparing simulated results to measured data. Two evaluations were considered,
namely long-term and short-term trials. The quality of both are determined according to certain
evaluation criteria and it is found that the model is more than 70% accurate for long-term
simulations and more than 80% accurate for short-term simulations.
Conclusion -
In conclusion, it is shown that simplified simulation of the human energy system is not only
possible but also relatively accurate. However, in order to accomplish the simulations a simple
quantification method is required and this is provided by the ets concept developed in the first part
of this study. Some recommendations are also made for future research regarding both the ets
concept and the simulation model.
Finally, as an initial endeavour the simulation model and the ets concept proposed in this study may
provide the necessary edge for groundbreaking biotechnological discoveries. / PhD (Mechanical Engineering) North-West University, Potchefstroom Campus, 2003
|
3 |
Simulation of the human energy system / Cornelis Petrus BothaBotha, Cornelis Petrus January 2002 (has links)
Preface -
Biotechnology is generally accepted to be the next economical wave of the future. In order to attain
the many benefits associated with this growing industry simulation modelling techniques have to be
implemented successfully. One of the simulations that ne' ed to be performed is that of the human
energy system.
Pharmaceutical companies are currently pouring vast amounts of capital into research regarding
simulation of bodily processes. Their aim is to develop cures, treatments, medication, etc. for major
diseases. These diseases include epidemics like diabetes, cancer, cardiovascular diseases, obesity,
stress, hypertension, etc. One of the most important driving forces behind these diseases is poor
blood sugar control.
The blood glucose system is one of the major subsystems of the complete human energy system. In
this study a simulation model and procedure for simulating blood glucose response due to various
external influences on the human body is presented.
The study is presented in two parts. The first is the development of a novel concept for quantifying
glucose energy flow into, within and out of the human energy system. The new quantification unit
is called ets (equivalent teaspoons sugar). The second part of the study is the implementation of the
ets concept in order to develop the simulation model.
Development of the ets concept -
In the first part of the study the ets concept, used for predicting glycaemic response, is developed
and presented.
The two current methods for predicting glycaemic response due to ingestion of food are discussed,
namely carbohydrate counting and the glycaemic index. Furthermore, it is shown that it is currently
incorrectly assumed that 100% of the chemical energy contained in food is available to the human
energy system after consumption. The ets concept is derived to provide a better measure of
available energy from food.
In order to verify the ets concept, two links with ets are investigated. These are the links with
insulin response prediction as well as with endurance energy expenditure. It is shown that with both
these links linear relationships provide a good approximation of empirical data. It is also shown that
individualised characterisation of different people is only dependent on a single measurable variable
for each link.
Lastly, two novel applications of the ets concept are considered. The first is a new method to use the
ets values associated with food and energy expenditure in order to calculate both short-acting and
long-acting insulin dosages for Type 1 diabetics. The second application entails a new
quantification method for describing the effects of stress and illness in terms of ets.
Development of the blood glucose simulation model -
The second part of the study presents a literature study regarding human physiology, the
development for the blood glucose simulation model as well as a verification study of the
simulation model.
Firstly, a brief overview is given for the need and motivation behind simulation is given. A
discussion on the implementation of the techniques for construction of the model is also shown. The
procedure for solving the model is then outlined.
During the literature study regarding human physiology two detailed schematic layouts are
presented and discussed. The first layout involves the complex flow pathways of energy through the
human energy system. The second layout presents a detailed discussion on the control system
involved with the glucose energy pathway.
Following the literature review the model for predicting glycaemic response is proposed. The
design of the component models used for the simulations of the internal processes are developed in
detail as well as the control strategies implemented for the control system of the simulation model.
Lastly, the simulation model is applied for glycaemic response prediction of actual test subjects and
the quality of the predictions are evaluated. The verification of the model and the procedure is
performed by comparing simulated results to measured data. Two evaluations were considered,
namely long-term and short-term trials. The quality of both are determined according to certain
evaluation criteria and it is found that the model is more than 70% accurate for long-term
simulations and more than 80% accurate for short-term simulations.
Conclusion -
In conclusion, it is shown that simplified simulation of the human energy system is not only
possible but also relatively accurate. However, in order to accomplish the simulations a simple
quantification method is required and this is provided by the ets concept developed in the first part
of this study. Some recommendations are also made for future research regarding both the ets
concept and the simulation model.
Finally, as an initial endeavour the simulation model and the ets concept proposed in this study may
provide the necessary edge for groundbreaking biotechnological discoveries. / PhD (Mechanical Engineering) North-West University, Potchefstroom Campus, 2003
|
Page generated in 0.0333 seconds