• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 73
  • 24
  • 18
  • 16
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 233
  • 90
  • 75
  • 55
  • 46
  • 44
  • 42
  • 41
  • 40
  • 39
  • 36
  • 35
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Improving DSM project implementation and sustainability through ISO standards / Mariska van Heerden

Van Heerden, Mariska January 2014 (has links)
South African industries are challenged with above inflation electricity tariffs which may affect their competitiveness within their relative markets. In order to successfully manage these rising electricity costs and ensuing top market competition, a well organised demand side management (DSM) strategy must be implemented. Energy service companies (ESCos) have been assisting Eskom, South Africa’s leading electricity utility, in managing energy projects around the country. These DSM projects have introduced remarkable electricity and cost savings. However, the need for a sustainable energy management system (EnMS) within these projects does exist. This dissertation illustrates and discusses an EnMS designed to achieve maximum possible energy savings performances. The ISO 9 001 (quality management), ISO 14 001 (environmental management) and ISO 50 001 (energy management) standards were integrated for the development and implementation of this system. It provides a framework for project engineers and industrial clients to apply before, during and after project implementation. The use of the Plan-Do-Check-Act (PDCA) cycle will be applied throughout the dissertation. The PDCA cycle follows basic steps recommended by the relevant ISO standards. This cycle emphasises the concept of continual improvement. The developed EnMS was successfully implemented on various DSM projects. This selection includes previously maintained and new implemented projects. An analysis between the implementation and post- implementation performances supports the achieved results. The results of the case studies are presented in this dissertation. This dissertation illustrates that the continual improvement of an ISO based EnMS will result in a sustainable increase in electricity savings. An overall increase in project quality can be defined and measured according to the electricity consumptions and electricity cost savings. These electricity cost savings from the selected projects resulted to nearly R18 million during project implementation. A total amount of R52 million was already saved during the maintenance phase of 2014. This cost savings only reflect the results of the eight selected projects for the first eight months in 2014. The EnMS explained in this dissertation indicates that a continually controlled framework can improve the quality of DSM project implementation and sustainability. With the flexibility of changing the system according to impulsive constraints and client demands, the system can be used with various DSM projects. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
22

Improving DSM project implementation and sustainability through ISO standards / Mariska van Heerden

Van Heerden, Mariska January 2014 (has links)
South African industries are challenged with above inflation electricity tariffs which may affect their competitiveness within their relative markets. In order to successfully manage these rising electricity costs and ensuing top market competition, a well organised demand side management (DSM) strategy must be implemented. Energy service companies (ESCos) have been assisting Eskom, South Africa’s leading electricity utility, in managing energy projects around the country. These DSM projects have introduced remarkable electricity and cost savings. However, the need for a sustainable energy management system (EnMS) within these projects does exist. This dissertation illustrates and discusses an EnMS designed to achieve maximum possible energy savings performances. The ISO 9 001 (quality management), ISO 14 001 (environmental management) and ISO 50 001 (energy management) standards were integrated for the development and implementation of this system. It provides a framework for project engineers and industrial clients to apply before, during and after project implementation. The use of the Plan-Do-Check-Act (PDCA) cycle will be applied throughout the dissertation. The PDCA cycle follows basic steps recommended by the relevant ISO standards. This cycle emphasises the concept of continual improvement. The developed EnMS was successfully implemented on various DSM projects. This selection includes previously maintained and new implemented projects. An analysis between the implementation and post- implementation performances supports the achieved results. The results of the case studies are presented in this dissertation. This dissertation illustrates that the continual improvement of an ISO based EnMS will result in a sustainable increase in electricity savings. An overall increase in project quality can be defined and measured according to the electricity consumptions and electricity cost savings. These electricity cost savings from the selected projects resulted to nearly R18 million during project implementation. A total amount of R52 million was already saved during the maintenance phase of 2014. This cost savings only reflect the results of the eight selected projects for the first eight months in 2014. The EnMS explained in this dissertation indicates that a continually controlled framework can improve the quality of DSM project implementation and sustainability. With the flexibility of changing the system according to impulsive constraints and client demands, the system can be used with various DSM projects. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
23

Assessing the thermal performance of buildings at the construction stage using thermography : development and evaluation of a testing approach in the context of new housing in Wales

Taylor, Tim January 2014 (has links)
At present there are concerns that new housing in the UK under-performs in terms of energy-efficiency. In research studies where the thermal performance of the building fabric has been measured, post-construction, significant gaps between design predictions and the as-built performance of new housing have been found. This thesis is concerned with how thermography may be used to assess the thermal performance of new housing during the construction process. The practical utility of this testing approach, which has not been investigated in-depth by previous research, is to identify performance issues at a stage when undertaking remedial work is less costly and disruptive. Moreover, by identifying issues that could reduce the energy-efficiency of the building fabric, these tests could help address the observed "performance gap". An approach for using thermography at different stages of construction has been developed through practical case studies and experimental work. The complementary use of heat transfer modelling and thermography is also explored. Finally, through interviews with industry professionals, the context of implementing tests within UK housing development practices is examined. The results of applying the testing approach demonstrate that beneficial feedback can be obtained without significant interruption to construction activities. However, test procedures need to be modified according to the stage and method of construction. It is proposed that heat transfer modelling can inform the interpretation of test results and analysis of defect severity. For the testing approach to be implemented more widely, there would need to be further development and trials on different types of construction and the oversight of an independent body to establish its credibility. In conclusion, thermography has the potential alongside other testing and inspection practices to help improve standards of site construction. However, there are limitations to its use which need to be considered if such tests are to be implemented effectively.
24

Investigation of energy performance and climate change adaptation strategies of hotels in Greece

Farrou, Ifigenia January 2013 (has links)
There is evidence that hotels are the highest energy use buildings of the tertiary sector in Europe and internationally because of their operational characteristics and the large number of users. Therefore, there is potential for significant energy savings. This study investigated the energy performance of the hotel sector in Greece and proposes a methodology for their energy classification and climate change mitigation strategies for an optimum building envelope design for a typical hotel building operated all year or seasonally. This was achieved by collecting operational energy data for 90 Greek hotels and analyzing them using the k-means algorithm. Then a typical hotel building was modelled using TRNSYS and climate change weather files to assess the impact on its energy demand and to propose climate change mitigation strategies. The assessment was performed via hourly simulations with real climatic data for the past and generated future data for the years 2020, 2050 and 2080. The analysis of the energy data (based on utilities supply) of 90 hotels shows average consumption approx 290 kWh/m2/year for hotels with annual operation and 200 kWh/m2/year for hotels with seasonal operation. Furthermore, the hotels were classified in well separated clusters in terms of their electricity and oil consumption. The classification showed that each cluster has high average energy consumption compared to other buildings in Greece. Cooling energy demand of the typical building increased by 33% and heating energy demand decreased by 22% in 2010 compared to 1970. Cooling load is expected to rise by 15% in year 2020, 34% in year 2050 and 63% in year 2080 compared to year 1970. Heating load is expected to decrease by 14% in year 2020, 29% in year 2050 and 46% in year 2080. It was found that different strategies can be applied to all year and seasonally operated buildings for the most energy efficient performance. These include: a. For all year operated buildings: insulation, double low e glazing, intelligently controlled night and day ventilation, ceiling fans and shading. The building of year 2050 would need more shading and the building of year 2080 would need additional shading and cool materials. b. For seasonally operated buildings: Intelligently controlled night and day ventilation, cool materials, ceiling fans, shading and double low e glazing. Only the building of year 2080 would need insulation. This study makes a contribution to understanding the impact of the climate change on the energy demand of hotel buildings and proposes mitigation strategies that focus on the building envelope in different periods and climatic zones of Greece.
25

Evaluating building energy performance : a lifecycle risk management methodology

Doylend, Nicholas January 2015 (has links)
There is widespread acceptance of the need to reduce energy consumption within the built environment. Despite this, there are often large discrepancies between the energy performance aspiration and operational reality of modern buildings. The application of existing mitigation measures appears to be piecemeal and lacks a whole-system approach to the problem. This Engineering Doctorate aims to identify common reasons for performance discrepancies and develop a methodology for risk mitigation. Existing literature was reviewed in detail to identify individual factors contributing to the risk of a building failing to meet performance aspirations. Risk factors thus identified were assembled into a taxonomy that forms the basis of a methodology for identifying and evaluating performance risk. A detailed case study was used to investigate performance at whole-building and sub-system levels. A probabilistic approach to estimating system energy consumption was also developed to provide a simple and workable improvement to industry best practice. Analysis of monitoring data revealed that, even after accounting for the absence of unregulated loads in the design estimates, annual operational energy consumption was over twice the design figure. A significant part of this discrepancy was due to the space heating sub-system, which used more than four times its estimated energy consumption, and the domestic hot water sub-system, which used more than twice. These discrepancies were the result of whole-system lifecycle risk factors ranging from design decisions and construction project management to occupant behaviour and staff training. Application of the probabilistic technique to the estimate of domestic hot water consumption revealed that the discrepancies observed could be predicted given the uncertainties in the design assumptions. The risk taxonomy was used to identify factors present in the results of the qualitative case study evaluation. This work has built on practical building evaluation techniques to develop a new way of evaluating both the uncertainty in energy performance estimates and the presence of lifecycle performance risks. These techniques form a risk management methodology that can be applied usefully throughout the project lifecycle.
26

Intégration des aspects énergétiques dans la conception du projet architectural : une approche méthodologique / Integration of energy issues in the design of the architectural project : a methodological approach

Moreno Sierra, Andres 21 December 2012 (has links)
Selon les objectifs d’efficacité énergétique à l’horizon 2020 en France, le secteur du bâtiment évolue vers des constructions dites à « énergie positive ». Ces nouveaux enjeux imposent l’intégration de nouvelles composantes aux aspects architecturaux et techniques, ainsi qu’une rupture dans les modes de conception et d’évaluation d’un projet. Mais la recherche de la performance énergétique dépend d’instruments numériques de mesure qui ne sont parfois pas adaptés à la démarche de conception des architectes, ce qui se traduit par la difficulté de mettre en cohérence le projet architectural et les objectifs de performance énergétique.L’objectif de ce travail est d’analyser la complexité de l’intégration des aspects énergétiques dans les différentes phases du processus de conception, afin de proposer une démarche qui permette d’optimiser la performance énergétique. Pour étudier ces questions, nous proposons d’analyser et de reconstituer la démarche de conception de l’architecte d’un point de vue méthodologique, pour aborder postérieurement la question de l’optimisation de la performance énergétique à l’aide d’outils numériques.L’étude du processus de conception permet d’évaluer l’impact de la composante énergie et son importance dans les phases initiales dans la démarche du concepteur. L’analyse systémique des aspects énergétiques montre l’interrelation entre les problématiques générales et les différents choix de conception. La formulation d’une stratégie de conception à travers un outil méthodologique, nous permet de proposer une démarche d’optimisation de la performance énergétique basée sur la structure morphologique du bâtiment.Cette approche ouvre de nouvelles perspectives méthodologiques dans la conception de bâtiments à énergie positive. La complexité des relations entre l’énergie, la morphologie des bâtiments, les outils numériques seraient en train de modifier le processus de conception en architecture et la future organisation des ensembles urbains. / According to the French energy efficiency target for 2020, the building industry is moving towards "positive energy". These new challenges require the integration of new components to architectural and technical aspects, as well as a break in the methods of design and evaluation of the project. But the research for energy efficiency depends of digital measurement instruments which are not adapted to the design process of architects, which results in the difficulty of consistency between architectural and energy performance targets.The objective of this work is to analyze the complexity of integrating energy issues in the design process, to propose a methodological approach which optimizes energy efficiency. To address these issues, we propose to analyze and reconstruct the design process from a methodological point of view, later to study the optimization of energy performance using digital tools.The study of the design process shows the impact of the energy component and its important role in the early stages of the design process. The methodological analysis of energy issues shows the interrelation between general principles and design decisions. The formulation of a design strategy using a methodological tool allows us to propose an approach for optimizing the energy performance based on the morphological structure of the building.This approach opens new methodological perspectives in the design of positive energy buildings. The complexity of the relationship between energy, the morphology of buildings and the use of digital tools would be changing the design process in architecture and the future organization of urban complexes. / De acuerdo con los objetivos de eficiencia energética para el año 2020 en Francia, la industria de la construcción se dirige hacia las construcciones de "energía positiva". Estos nuevos desafíos exigen la integración de nuevos componentes a los aspectos arquitectónicos y técnicos del proyecto, así como una ruptura en sus métodos de diseño y evaluación. Pero la optimización de la eficiencia energética depende del uso de herramientas digitales de medición que usualmente no se encuentran adaptadas al proceso de diseño arquitectónico, lo que dificulta la coordinación entre el proyecto arquitectónico y los aspectos energéticos.El objetivo de este trabajo es analizar la complejidad de la integración de la componente energética en el proceso de diseño, proponiendo un enfoque que permita optimizar la eficiencia energética. Para estudiar este tema, se propone analizar y reconstruir el proceso de diseño del arquitecto desde un punto de vista metodológico, para abordar posteriormente la problemática de la optimización de la eficiencia energética a través de herramientas digitales.El estudio del proceso de diseño muestra el impacto de la energía y su importancia de las primeras etapas del proceso de diseño. El análisis metodológico de los aspectos energéticos muestra la interrelación entre los temas principales y las decisiones de diseño. La formulación de una estrategia de diseño utilizando una herramienta metodológica permite proponer un enfoque para la optimización de la eficiencia energética basado en la estructura morfológica del edificio.Este enfoque abre nuevas perspectivas metodológicas en el diseño de edificios de energía positiva. La complejidad de las relaciones entre la energía, la morfología de los edificios y el uso de herramientas digitales estarían cambiando el proceso de diseño y la organización futura de los complejos urbanos
27

Právní úprava energetické účinnosti v Evropské unii / The Legislation Governing Energy Efficiency in the European Union

Štípa, Martin January 2018 (has links)
THE TITLE OF THE DIPLOMA THESIS AND ABSTRACT TITLE: The Legislation Governing Energy Efficiency in the European Union ABSTRACT: The European Union's energy policy has undergone a major transformation over the last few years. The interest in ensuring sustainability, self-sufficiency, competitiveness and secure energy supplies leads to deeper energy integration among Member States. High energy efficiency is an ideal tool for achieving these particular objectives because its basic principle is to provide more services while using the same or even less energy. As a result, a variety of conceptual instruments and relevant legislation have been revised over the last few years, which was accompanied by a conflict of interest between various stakeholders and the adoption of less than ideal compromise solutions. This diploma thesis aims to evaluate the current legislation on energy efficiency in the European Union, including its development. The thesis is divided into three parts, the first of which represents the initial theoretical basis that aims to define the basic concepts and indicators of energy efficiency. The second part deals with the strong link between environmental protection and energy efficiency while emphasizing the importance of fundamental environmental principles that are reflected in the...
28

Quantifying Environmental Performance of Jali Screen Façades for Contemporary Buildings in Lahore Pakistan

Batool, Ayesha 17 June 2014 (has links)
Jali screens are traditional window treatments in vernacular buildings throughout South Asia and the Middle East. Contemporary builders are starting to incorporate Jali screens as decorative façade elements; however, architects and scholars have largely ignored the impact of Jali screens on overall building energy and day-lighting performance. This research evaluates the effect of Jali screens, across a range of perforation ratios, on energy utilization and day-lighting quality in contemporary office buildings. The data collection and analysis is through fieldwork in Lahore, Pakistan, as well as through computational energy modeling. Results demonstrate that Jali screens have a promising positive impact on cooling loads and may improve visual comfort. The findings suggest a holistic perspective combining traditional architecture and performance enhancement by architects and designers.
29

Estudo de um indicador de eficiência energética integrado para análise do desempenho de condicionadores de ar de baixa capacidade

Soares, Sergio Luiz Pereira 24 May 2018 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-10-04T12:11:50Z No. of bitstreams: 1 Sergio Luiz Soares_.pdf: 1746661 bytes, checksum: 5c7481fa196ae8f0b3f13a7df025ee26 (MD5) / Made available in DSpace on 2018-10-04T12:11:51Z (GMT). No. of bitstreams: 1 Sergio Luiz Soares_.pdf: 1746661 bytes, checksum: 5c7481fa196ae8f0b3f13a7df025ee26 (MD5) Previous issue date: 2018-05-24 / Nenhuma / O presente estudo aborda a influência das condições climáticas, do perfil de utilização nos ambientes e da utilização da tecnologia inverter em equipamentos do tipo Split Hi Wall, aplicados a ambientes residenciais e comerciais de pequeno porte no Brasil, através da utilização de um indicador de eficiência energética integrado. Considerando que esse tipo de equipamento é o mais utilizado para a climatização desses ambientes, existe um grande potencial de redução de consumo de energia elétrica se profissionais e consumidores possuírem subsídios para selecionar equipamentos comprovadamente mais eficientes. O trabalho apresenta a metodologia desenvolvida para: seleção de cidades para representar diferentes zonas bioclimáticas brasileiras; definição das características construtivas e de utilização de uma sala de estar e de um escritório; determinação dos coeficientes das curvas de performance do Split Hi Wall, com capacidade de 2640 W e coeficiente de eficiência energética (CEE) de 3,30 W/W, operando em refrigeração. Com a utilização do programa computacional EnergyPlus, foram realizadas 24 simulações do comportamento do equipamento com velocidade fixa e variável, nas salas e escritórios das cidades de Curitiba/PR, São Paulo/SP, Brasília/DF, Campo Grande/MS, Cuiabá/MT e Fortaleza/CE, durante um ano de funcionamento. Utilizando-se um índice integrado, o Coeficiente de Eficiência Energética Integrado (ICEE), e analisando-se os resultados de um ano de operação, o Split Hi Wall estudado alcançou 4,95 W/W, 50% maior que o CEE nominal (3,30 W/W), sendo que os aparelhos com tecnologia inverter atingiram valores 29% superiores aos com velocidade fixa. Independente da tecnologia, os condicionadores de ar estudados apresentam os maiores valores de ICEE em temperaturas externas na faixa entre 20 ºC e 25 ºC, sendo 4,01 W/W com velocidade fixa e 5,18 W/W nos inverter´s. A faixa de razão de carga parcial (PLR) entre 0,4 e 0,6 apresenta a maior quantidade de valores máximos, podendo alcançar ICEE de 5,19 W/W com o inverter. As informações obtidas serviram como base na elaboração de uma proposta para cálculo de um coeficiente integrado de eficiência energética, o qual utiliza informações de arquivos climáticos e resultados de CEE segundo o fator de carga e de temperatura externa, sem a necessidade de utilização de programas de simulação computacional, sendo capaz de fornecer os subsídios necessários para a correta seleção dos condicionadores de ar mais eficientes. / The following study approaches the influence of climatic conditions, usage profile in different environments and the use of the inverter technology on Split Hi Wall models, applied in residences and small size businesses in Brazil, by using an integrated energy efficiency indicator. Considering that this is the most used model in those types of environment, there is great potential for reduction of energy consumption if professionals who work in the field and consumers have guidance in choosing equipment that is proven to be more efficient. The study presents the methodology developed for: selecting cities that will portray different bioclimatic zones in Brazil; defining the construction and usage features of a living room and an office; determining the coefficient that represents the performance curves of an operating Split Hi Wall device, with capacity of 2640 W and Coefficient of Energy Efficiency (CEE) of 3.30 W/W. By using the computer software EnergyPlus, the performance of the device with fixed and variable speeds was simulated 24 times in living rooms and offices in the cities of Curitiba/PR, São Paulo/SP, Brasília/DF, Campo Grande/MS, Cuiabá/MT and Fortaleza/CE, during one year of operation. Utilizing an integrated indicator, the Integrated Energy Efficiency Ratio (IEEC), and analyzing the results of one year’s operation, the studied model achieved 4.95 W/W, 50% above the nominal CEE (3.30 W/W), given that the devices with the inverter technology reached values that are 29% above the fixed speed ones. Regardless the technology, the analyzed models show the highest rates of IEEC in outside temperatures that range between 20°C and 25°C, being 4.01 W/W on the fixed speed models and 5.18 W/W on the inverter ones. The Part Load Ration (PLR) that ranges between 0.4 and 0.6 shows the highest amount of maximum rates, being able to reach a 5.19 W/W rate with the inverter. The acquired information served as a foundation for the creation of a proposal to calculate an integrated energy efficiency coefficient, which uses information from climate archives and EEC results according to the load factor and outside temperature, without the need of simulation softwares, being able to provide the necessary subsidies for the correct selection of the most efficient air conditioners.
30

Bomba de calor ar/ar como sistema alternativo no aquecimento de aviários / Heat pump air/air as a heating alternative system in avian.

Tessaro, Alcione Rodrigo 21 September 2011 (has links)
Made available in DSpace on 2017-07-10T15:14:42Z (GMT). No. of bitstreams: 1 Tessaro_Texto_Completo.pdf: 1100731 bytes, checksum: a25e34be9cb4e5f90fe05aef925878f7 (MD5) Previous issue date: 2011-09-21 / This research aimed to create two prototypes for general heating of aviary cutting the first prototype mounted from a heat pump air/air, and the second prototype mounted from passing an electric heater. As a specific objective to assess the energy performance of prototype 1 simulating various scenarios of temperature and air velocities of passage in its condenser, and compare this performance with the electrical efficiency of the prototype 2. The experiment was conducted at the Experimental Station of agro-meteorological State University of West of Paraná, Cascavel Campus, a Latitude 24º 59' South, Longitude 53º 26' West and altitude of 682 m in the period june-july 2011. From the data collected in prototypes 1 and 2 were calculated their coefficient of performance and energy efficiency. The survey results showed that the coefficient of performance heat pump prototype 1 ranged from 1.22 to 2.58 as a function of temperature of -3 to 30°C in its evaporator and varying the speed of air passing through your condenser. The best efficiency achieved by the prototype 2 was 0.96. Comparing the prototype, it was found that prototype 1 consumed 54% less electricity to produce the same amount of heat that the prototype 2, considering the same conditions of temperature and air velocity of passage. In relation to its applicability poultry, it was estimated that prototype 1 is able to meet the calorific requirement and temperature of a batch of up to 396 chicks in its initial phase, while the prototype 2 supply a maximum of up to 148 chicks. To this end, it was concluded that the prototype 1 in this work, assembled from a heat pump air/air, demonstrated technically be a new alternative system for heating of poultry cut because its technology employed is energy-efficient, also achieved the characteristics of zootechnical from temperature and air velocities required in an aviary of court. / A presente pesquisa teve como objetivo geral criar dois protótipos para aquecimento de aviário de corte, o primeiro protótipo montado a partir de uma bomba de calor ar/ar, e o segundo protótipo montado a partir de um aquecedor elétrico de passagem. Como objetivo especifico avaliar o desempenho energético do protótipo 1 simulando diversas situações possíveis de temperatura ambiente e velocidades do ar de passagem em seu condensador, e comparar esse desempenho com a eficiência elétrica do protótipo 2. O experimento foi conduzido na Estação Experimental Agro-meteorológica da Universidade Estadual do Oeste do Paraná, Campus de Cascavel, a uma Latitude 24º59 Sul, Longitude de 53º26 Oeste e altitude de 682 m, no período de junho a julho de 2011. A partir dos dados coletados nos protótipos 1 e 2 foram calculados os seus respectivos coeficiente de desempenho e eficiência energética. Os resultados da pesquisa mostraram que o coeficiente de desempenho da bomba de calor do protótipo 1 variou de 1,22 à 2,58 em função da variação da temperatura de -3 à 30oC no seu evaporador e da variação da velocidade do ar de passagem pelo seu condensador. A melhor eficiência alcançada pelo protótipo 2 foi 0,96. Na comparação entre os protótipos, verificou-se que o protótipo 1 consumiu 54% menos energia elétrica para produzir a mesma quantidade de calor que o protótipo 2, considerando as mesmas condições de temperatura ambiente e velocidade do ar de passagem aplicada. Em relação a sua aplicabilidade avícola, estimou-se que o protótipo 1 é capaz de suprir as necessidades caloríficas e de temperatura de um lote de até 396 pintainhos, em sua fase inicial, enquanto o protótipo 2 supri um máximo de até 148 pintainhos. Para tanto, concluiu-se neste trabalho que o protótipo 1, montado a partir de uma bomba de calor ar/ar demonstrou ser tecnicamente um novo sistema alternativo no aquecimento de aviários de corte, pois sua tecnologia empregada é energeticamente eficiente, além de alcançar as características zootécnicas de temperatura e velocidades do ar exigidas em um aviário de corte.

Page generated in 0.0618 seconds